ISO 14064-1:2018 Greenhouse Gas Emissions Inventory

Professor Hong Yaoming, CEO

Nanhua University Sustainability Center

https://www.freeppt7.com

CONTENTS

2.

Introduction

Understanding Greenhouse Gas Inventory

3.

Introduction to ISO 14064-1:2018

4.

Inquiry case and report writing

INTRODUCTION

The Necessity and Scope of Carbon Neutrality

Why Carbon Inventory?

✓ 136 countries around the world and the EU declared net zero emissions

International brands require supply chains and products to be carbon-neutral

- (Carbon Disclosure Project, CDP)
 - Greenhouse gas emissions from the company's supply chain are on average 11.4 times the greenhouse gas emissions from the company's own operations
 - World Economic Forum 2021: Net-Zero Challenge: The supply chain opportunity report
 - The first key action is to establish supplier GHG emissions data

01 EU publishes CBAM draft/domestic ✓ European Union CBAM carbon fee

2023		DURING THE TRIAL PERIOD	20	25	2026	OFFICIAL IMPLEMENTATION
1	Point		·	Poin Officially	t / carry out CBAM decla	aration product
1. Impl conten 2. In th method country 3. Ther	ement the "Information I t and quantity of imported e trial phase, the EU will p d of carbon content, the d y of origin, etc. e is no need to purchase C	Jeclaration Business" 4 times a year, and fill I products. ropose implementation rules and standardiz eduction calculation method of the carbon p CBAM vouchers yet.	carbon content calculation, verification, payment of carbon price declaration, CBAM certificate sales, pricing,, return, repurchase, cancellation, reduction and exemption, etc.			
✓ Domestic carbon fees			Pi	reliminary es	timated timing of carbon fe	e collection
√	From big to small, b	ig with small mode	Poi	nt in time	Estimated Progress	
v ta	Design differential ake the initiative to r	rates to encourage enterprises to reduce carbon narging carbon fees is to reduce ollect money) End o	f April 2022	Draft revision of temperature management law sent to Legislative Yuan for review	
✓	The nurnose of ch		Before t	he end of 2022	Temperature control law rev	ision completed
Ca	bon rather than colle			2023	Established the related sub-m temperature managemer	nethods of the nt method
				2024	It is estimated that a carbon fee can be introduced	

資料來源:採訪整理

01 2050 Net Zero Transformation_Industrial Carbon Reduction Demand

254 large enterprises

- Announcement of emission sources under the temperature management method, the emission amount shall be checked and registered every year.
- 105.1.7 Public first batch
- Steel Industry/ Petroleum Refining Industry/ Cement Industry/ Semiconductor Industry/ Panel Industry
- Various Industries: direct emissions amounted to 25,000 tons

URGENT

Carbon Trading/ Carbon Offsetting Net Zero Emissions

190, 000 small and medium-sized enterprise

URGENT

URGENT

SLOW

Carbon reduction requirements from the supply chain (client) Electronic industry, Textile industry, Transportation industry, Food Industry

Export products (subject to CBAM control) iron and steel industry, metal products industry

Increased production costs (carbon fee/ energy price increase

Scope of Greenhouse Gas Inventory Coverage

- Scope of International Greenhouse Gas Inventory Coverage(SCOPE)
 - Direct emissions (Scope 1), Energy indirect emissions (Scope 2), Other indirect emissions (Scope 3)

資料來源:環保署溫室氣體排放量盤查作業指引

01

Scope of Greenhouse Gas Inventory Coverage

- Scope of Greenhouse Gas Inventory Covered by the Environmental Protection Agency at the Present Stage
 - Direct emissions and energy indirect emissions (i.e. Scope 1 and Scope 2)
- Scope of Inquiry Covered by Regulations in the EU Cap-and-Trade System
 - Including: Scope 1 Direct emissions from energy use of stationary combustion sources and manufacturing processes
 - Does not include: Scope 1 emissions from fugitive sources and mobile sources
- Multinational corporations or domestic industry supply chains
 - Select the scope of inspection according to the needs of upstream suppliers or downstream customers

Source: EPA Greenhouse Gas Emissions Inventory Operation Guidelines

Classification comparison table of emission categories of each inventory specification

EPA regulation scope		enhouse Gas Inventory Protocol (GHG Protocol)	ISO/CNS 14064-1 #1	
古		gory one	Category 1: Direct GHG emissions and removals Note 2	
		gory two	Category 2: Indirect GHG emissions from input energy	
		Category 4: Emissions from upstream transport and distribution Put Category 6: Emissions from business travel Category 7: Emissions from employee commuting Category 9: Emissions from downstream transport and distribution put	Category 3: Indirect GHG emissions from transport	
Other Indirect discharge	Categ	Category 1: Discharges arising from the purchase of goods or services put Category 2: Generation of capital goods purchased upstream emissions Category 3: Activities related to fuel and energy Emissions (not covered by Scope 1 or 2)	Category 4: Produced by products used by organizations between indirect greenhouse gas emissions	

Source: EPA Greenhouse Gas Emissions Inventory Operation Guidelines

01

Classification comparison table of emission categories of each inventory specification

EPA regulation scope	Greenhouse Gas Inventory Protocol (GHG Protocol)	ISO/CNS 14064-1 ** 1	
	Category 5: Disposal and Treated Emissions Category 8: Emissions from upstream leased assets		
	Category 10: Emissions from processing of products for sale put Category 11: Emissions from the use of products sold Category 12: Emissions from disposal of products sold Category 13: Emissions from downstream leased assets Category 14: Franchising Category 15: Emissions from investments	Category 5: Between and associated with the organization's product use indirect greenhouse gas emissions	
	_	Category 6: Indirect GHG emissions from other sources	

Source: EPA Greenhouse Gas Emissions Inventory Operation Guidelines

Scope of Greenhouse Gas Inventory Coverage

- Scope of Greenhouse Gas Inventory Covered by the Environmental Protection Agency at the Present Stage
 - Direct emissions and energy indirect emissions (i.e. Scope 1 and Scope 2)
- Scope of Inquiry Covered by Regulations in the EU Cap-and-Trade System
 - Including: Scope 1 Direct emissions from energy use of stationary combustion sources and manufacturing processes
 - Does not include: Scope 1 emissions from fugitive sources and mobile sources
- Multinational corporations or domestic industry supply chains
 - Select the scope of inspection according to the needs of upstream suppliers or downstream customers

Source: EPA Greenhouse Gas Emissions Inventory Operation Guidelines

Understanding Greenhouse Gas Inventory

The types of greenhouse gases, the definition of inventory, the purpose of inventory, who needs to check and common inventory specifications, and establish the basic concept of greenhouse gas inventory

What are greenhouse gases?

Greenhouse gases

- Absorbs radiation at specific wavelengths in the spectrum of thermal infrared radiation from the Earth's surface, the atmosphere itself, or clouds
- Allows sunlight to pass through the atmosphere, but retains heat energy on the Earth's surface and cannot escape the atmosphere
- Accumulating more and more will cause global warming

Types of greenhouse gases

- Definition source
 - Kyoto Protocol to the Third Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC)
 - Resolution XV of the Seventeenth Meeting of States Parties
 - EPA definition of temperature regulation
- Species: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6) and nitrogen trifluoride (NF3)

What is an interrogation? Why do we need an interrogation?

- Health check-like concept
 - Through regular inspections, we can find out where we can improve and improve
- Find emission hotspots by checking the results
 - Discover parts with reduction potential
 - Promote relevant reductions as

Who needs to check?

- Environmental Protection Agency Announcement "The First Batch of Emission Sources that Should Investigate and Register Greenhouse Gas Emissions"
- Annual greenhouse gas emissions from combustion of more than 25,000 metric tons of carbon dioxide equivalent (CO2e)

FSC's "Sustainable Development Roadmap for Listed Overseas Companies" Disclosure

check schedule	The first solution of the listed of the listed of of 5 billion to billion yuan completed investigation individual comp	stage T lidated sidiary ounter 10 capital ar to 10 cc has 2. the of panies.	The second stage The consolidated financial tatements subsidiaries of sted counter companies with a capital of more than 0 billion yuan and the steel nd cement industries have ompleted the investigation . Capital 5 billion to 10 illion Yuan listed counter ompany disk Check individual companies	The third stage 1. The consolidated statement subsidiary of the listed counter company with a capital of 5 billion to 10 billion yuan has completed the investigation 2. Listed counter companies with a capital of less than 5 billion yuan will check individual companies	The third stage		
	2023	2024	4 2025	2026	2027	2028	2029
Verification schedule		The first st Listed comp with a capit more than billion yuan the steel cement indu Verification completed More than million yuan consolidated statements of and ce subsidiaries	tage panies tal of 10 and and ustries 110 f steel ement		More than 110 million yuan and consolidated statements of steel and cement subsidiaries completed the verification 250- 10 billion yuan individual companies completed the verification	1.50-10 billion yuan Consolidated statement subsidiary company completed the verification Below 250 million yuan individual company completed the verification	5 billion yuan Under the consolidated newspaper Subsidiary complete verification

Stakeholders in multinational corporations or domestic industrial supply chains Consensus on progress towards net-zero emission targets for multinational corporations or domestic

- industries
 - Disclose the greenhouse gas emission information of its upstream suppliers or downstream customers
 - Incorporate the disclosure of emissions information into the corporate procurement specification as an index item

Carbon neutral goals committed by giant companies

company	carbon neutral goal				
Apple	2018 announced 100% adoption of green electricity. Before 2030, global business operations, supply chains and products will achieve net zero emissions.				
Meta	The electricity used for business operation is 100% renewable energy. To achieve full supply chain, employee commuting and business travel in 2030 net zero emissions.				
Microsoft	In 2030, we will not only need carbon neutrality, but also achieve negative carbon emissions.				
Amazon	Use 100% renewable energy in 2025, achieve zero carbon emissions for 50% of goods in 2030, and achieve carbon emission in 2040 neutralize.				
Google	Data centers and parks have zero carbon emissions, and will achieve comprehensive zero carbon emissions in 2030.				

Participants in voluntary greenhouse gas reduction management, voluntary disclosure or other requirements

- Allow investors to evaluate companies based on their disclosure of greenhouse gas emissions
 - Carbon Disclosure Project (CDP) and the Dow Jones Sustainability Index (DJSI)
- ESG report: Consider greenhouse gas inventory information as one of the indicators for relevant information disclosure
 - Climate finance disclosure (Task Force on Climate-related Financial Disclosures, TCFD)
 - Sustainable Accounting Standards (Sustainability Accounting Standards Board, SASB)
- Setting of reduction goals
 - Science Based Targets Initiative (SBTi)
- Basis for voluntary GHG reduction management operations: Greenhouse Gas Inventory

Correlation among ISO 1406X series standards

適 用 的 溫 室 氣 體 方 案 或 預 期 使 用 者 之要求事 項

ISO 14064-1:2018 Description Registration of regulations, terminology, basic procedures and check results

ISO 14064-1:2018 Description

01 ISO 14064-1 regulation catalog

Foreword

Introduction

1 Scope

2 Normative references

3 Terms and definitions

3.1 Terms relating to greenhouse gases

3.2 Terms relating to the GHG inventory process

3.3 Terms relating to biogenic material and land use

3.4 Terms relating to organizations, interested parties and verification

4 Principles

4.1 General

4.2 Relevance

4.3 Completeness.

4.4 Consistency

4.5 Accuracy

4.6 Transparency

- 前言
- 介紹
- 1 範圍
- 2 規範性參考
- 3 術語和定義
 - 3.1 與溫室氣體有關的術語
 - 3.2 與溫室氣體清單過程相關的術語
 - 3.3 與生物材料和土地利用有關的術語
 - 3.4 與組織、相關方和驗證有關的術語
- 4 原則

4.1 概述 4.2 相關性 4.3 完整性 4.4 一致性 4.5 準確性 4.6 透明度

ISO 14064-1 Regulatory Catalog

5 GHG inventory boundaries

- 5.1 Organizational boundaries
- 5.2 Reporting boundaries
 - 5.2.1 Establishing reporting boundaries
 - 5.2.2 Direct GHG emissions and removals
 - 5.2.3 Indirect GHG emissions
 - 5.2.4 GHG inventory categories
- 6 Quantification of GHG emissions and removals
 - 6.1 Identification of GHG sources and sinks
 - 6.2 Selection of quantification approach
 - 6.2.1 General
 - 6.2.2 Data selection and collection used for quantification
 - 6.2.3 Selection or development of GHG quantification model
 - 6.3 Calculation of GHG emissions and removals6.4 Base-year GHG inventory
 - 6.4.1 Selection and establishment of base year6.4.2 Review of base-year GHG inventory

- 5 溫室氣體清單邊界
 - 5.1 組織邊界
 - 5.2 報告界限
 - 5.2.1 建立報告界限
 - 5.2.2 直接溫室氣體排放和清除
 - 5.2.3 間接溫室氣體排放
 - 5.2.4 溫室氣體清單類別
- 6 溫室氣體排放和清除的量化
 - 6.1 溫室氣體源和彙的識別
 - 6.2 量化方法的選擇
 - 6.2.1 概述
 - 6.2.2 用於量化的數據選擇和收集
 - 6.2.3 溫室氣體量化模型的選擇或開發
 - 6.3 溫室氣體排放和清除的計算
 - 6.4 基準年溫室氣體清單
 - 6.4.1 基準年的選擇和建立
 - 6.4.2 審查基準年溫室氣體清單

ISO 14064-1 Regulatory Catalog

7 Mitigation activities

7.1 GHG emission reduction and removal enhancement initiatives

7.2 GHG emission reduction or removal enhancement projects

7.3 GHG emission reduction or removal enhancement targets

8 GHG inventory quality management

8.1 GHG information management

8.2 Document retention and record keeping

8.3 Assessing uncertainty

9 GHG reporting

9.1 General

9.2 Planning the GHG report

9.3 GHG report content

9.3.1 Required information

9.3.2 Recommended information

9.3.3 Optional information and associated requirements

10 Organization's role

Annex A (informative) Process to consolidate data

7 減緩活動 7.1 溫室氣體減排和清除增強舉措 7.2 溫室氣體減排或增強清除項目 7.3 溫室氣體減排或增強清除目標 8 溫室氣體清單質量管理 8.1 溫室氣體信息管理 8.2 文件保留和記錄保存 8.3 評估不確定性 9 溫室氣體報告 9.1 總則 9.2 規劃溫室氣體報告 9.3 溫室氣體報告内容 9.3.1 所需信息 9.3.2 推薦信息 9.3.3 可選信息和相關要求 10 組織的作用 附錄 A (資料性附錄) 整合數據的過程

Terms and Definitions

3.1 Terms related to greenhouse gases

1. Greenhouse gas(GHG)

Natural and man-made atmospheric gas components1 absorb and emit radiation at specific wavelengths within the infrared radiation spectrum emitted by the Earth's surface, atmosphere, and clouds.

- ✓ Remark 1. Greenhouse Gas List Refer to latest <u>Intergovernmental Panel of Experts on Climate Change (IPCC)</u> evaluation report
- ✓ Remark 2. Water vapor and ozone are Anthropogenic as well as natural greenhouse gases, although not included as recognized greenhouse gases due to difficulty 1 Separated in most cases from human-induced global warming components attributable to presence.
- 2. Source of greenhouse gases

The process of releasing greenhouse gases (3.1.1) into the atmosphere.

3. Greenhouse gas sink

The process of removing greenhouse gases (3.1.1) from the atmosphere.

4. Greenhouse gas reservoir

Components other than the atmosphere that have the ability to accumulate greenhouse gases (3.1.1),

store them and release them.

Remarks 1. Oceans, soils, and forests are examples of components that can be used as repositories.

Remark 2. Greenhouse gas capture and storage is one of the processes of forming a greenhouse gas reservoir.

5. Greenhouse gas emission

Release of greenhouse gases (3.1.1) into the atmosphere.

6. Greenhouse gas removal

Removal of greenhouse gases (3.1.1) from the atmosphere by greenhouse gas sinks (3.1.3).

7. Greenhouse gas emission factor

Coefficient related to greenhouse gas activity data (3.2.1) for greenhouse gas emissions (3.1.5).

Note: GHG emission factors may contain an oxidizing component.

8 Greenhouse gas removal factor

Coefficient related to greenhouse gas activity data (3.2.1) for greenhouse gas removal (3.1.6).

Note: GHG removal factor may contain an oxidizing component

9. Direct greenhouse gas emission

Greenhouse gas emissions (3.1.5) from greenhouse gas sources (3.1.2) owned or controlled by the fabric (3.4.2).

Note: This standard uses the concepts of ownership or control (financial or operational control) to establish organizational boundaries.

10. Direct greenhouse gas removal GHG removal (3.1.6) from GHG sinks (3.1.3) owned or controlled by an organization (3.4.2).

11. Indirect greenhouse gas emission

greenhouse gas emissions (3.1.5) resulting from the operations and activities of the organization (3.4.2),

The emissions are from sources of greenhouse gases that are not owned or controlled by the organization (3.1.2).

Remarks: These emissions are usually generated in upstream or downstream industrial chains.

12. Global warming potential

Index based on radiative properties of greenhouse gases (3.1.1) Measure the pulse emission per unit mass of a specific greenhouse gas in the atmosphere on the same day after the radiation shock, after a selected time limit, relative to the equivalent unit of carbon dioxide (CO2) 。

13. Carbon dioxide equivalent

Unit for comparing the radiative impact of a greenhouse gas (3.1.1) relative to carbon dioxide. Note: CO2 equivalent is calculated by multiplying the mass of a specific greenhouse gas by its global warming potential (3.1.12) .

3.2 Terminology related to the greenhouse gas inventory process

1. Greenhouse gas activity data

Quantitative measure of an activity that results in greenhouse gas emissions (3.1.5) or greenhouse gas removal (3.1.6). Example: energy, fuel or electricity consumed, quantity of materials produced, services provided, area of affected land.

2. Primary data

A quantitative value obtained by direct measurement or calculation based on direct measurement of a process or activity. Note: Raw data may include GHG emission factors (3.1.7) or GHG removal factors (3.1.8) and/or GHG activity data.

3. Site-specific data

Raw data (3.2.2) acquired within organizational boundaries (3.4.7). Note: All field-specific data are raw data, but not all raw data are field-specific data.

4. Secondary data

Data obtained from sources other than raw data (3.2.2).

Note: Such sources may include databases and published literature verified by responsible agencies.

3.2.5 Greenhouse gas statement

Inappropriate use: the term GHG assertion

a true and objective statement about the subject matter of which it is provided (3.4.9) or corroborated (3.4.10).

Note 1. A GHG statement can be presented at a point in time or over a period of time.

Remark 2. The greenhouse gas statement put forward by the responsible person (3.4.3) must be clearly identifiable, and can be evaluated or measured by the verifier (3.4.11) or the verifier (3.4.12) according to appropriate criteria.

Remark 3. The GHG statement can be in the form of a GHG report (3.2.9) or a GHG plan (3.2.9) proposed.

3.2.6 Greenhouse gas inventory

Greenhouse gas sources (3.1.2) and greenhouse gas sinks (3.1.3), and their quantified greenhouse gas emissions (3.1.5) and temperature

List of chamber gas removal (3.1.6)

7. Greenhouse gas project

Conditions for changing the GHG baseline to result in a reduction in GHG emissions (3.1.5) or removal of GHGs

(3.1.6) Incremental activities.

Note: CNS 14064-2 (ISO 14064-2) provides information on how to determine and use greenhouse gas baselines.

8. Greenhouse gas program

Voluntary or mandatory international, national or national sub-system or scheme to register, measure or manage greenhouse gas emissions (3.1.5), greenhouse gas emissions (3.1.5), Gas removal (3.1.6), GHG emission reduction or GHG removal increment.

9. Greenhouse gas report

Communicate GHG-related information from an organization (3.4.2) or GHG program (3.2.7) to its intended users

(3.4.4) A single document for communication.

Note: A GHG report may include a GHG statement (3.2.5).

10. Base year

For comparison of GHG emissions (3.1.5) or GHG removals (3.1.6) or other relevant hourly For informational purposes, a specific historical period is identified.

11. Greenhouse gas reduction initiative

Non-structured greenhouse gas program (3.2.7), undertaken by an organization (3.4.2) on an individual or continuous basis to reduce or prevent direct or indirect greenhouse gas emissions (3.1.5) or to enhance direct or indirect Greenhouse gas removal (3.1.6), the specific activity or initiative implemented.

12. Monitoring

Ongoing or periodic assessment of GHG emissions (3.1.5), GHG removals (3.1.6) or other GHG-related data.

13. Uncertainty

Parameters associated with quantitative results can characterize the dispersion of values and can be reasonably measured as quantitative values.

Note: Uncertainty information is generally a quantitative estimate illustrating the dispersion of values and a qualitative statement of possible causes of the dispersion

14.Significant indirect greenhouse gas emission initiative (Significant indirect GHG emission)

Greenhouse gas emissions (3.1.5) that are quantified and reported by the organization (3.4.2) and that meet the materiality criteria set by the organization.

3.3 Terms related to biological source materials and land use

1. Biomass

Materials of biological origin, except materials buried in geological formations and materials transformed into fossil materials.

Note: Biomass includes organic materials (living and non-living), such as trees, grains, grasses, tree branches, algae, animals, compost and wastes of biological origin.

2. Biogenic carbon

Carbon produced from biomass (3.3.1).

3. Biogenic CO₂

Carbon dioxide obtained from the oxidation of biomass carbon (3.3.2).

4. Anthropogenic biogenic GHG emission

Greenhouse gas emissions (3.1.5) from materials of biological origin as a result of human activities.

5. Direct land use change

Alteration of land within relevant boundaries for human use.

Note: The relevant boundary is the reporting boundary (3.4.8).

3.3.6 Land use

Human use or management of the land within the relevant

boundaries.

Note: The relevant boundary is the reporting boundary (3.4.8).

3.3.7 Non-anthropogenic biogenic GHG emission

Greenhouse gas emissions (3.1.5) from materials of biological origin resulting from **natural disasters** (e.g. wildfire or insect infestation) or **natural evolution** (e.g. growth, decomposition).

3.4 Terms related to organizations, stakeholders and verification

1. Facility

A single installation, an assembly of installations or a production process (stationary or mobile) that can be defined within a single geographical boundary, organizational unit or production process.

2. Organization

A person or group of persons with its own functions, responsibilities, authorities and relationships to achieve its goals.

Note: The concept of organization includes (but is not limited to) sole proprietor, company, body corporate, firm, enterprise, authority, partnership, academic association, charity or public facility, or any part or combination of the above, whether independent Or joint stock, public or private.

3. Responsible party

The person or persons responsible for presenting the GHG statement (3.2.5) and supporting information for the GHG (3.1.1).

Note: The responsible person can be an individual or a representative of a group (3.4.2) or project, and can be employed to verify

(3.4.11) or certifier (3.4.12) group.

4. Intended user

A person or organization (3.4.2) identified by the reporter of GHG-related information as a person or group that relies on such information to make decisions.

Note: Intended users can be customers (3.4.5), responsible persons (3.4.3), the organization itself, managers of GHG programmes (3.2.8), regulators, financial groups or other affected stakeholders,

Example: Local groups, government departments, general public or non-governmental organisations.

5. Client

organization (3.4.2) or person requesting verification (3.4.9) or confirmation (3.4.10).

6. Intended use of the GHG inventory

primary objective defined by an organization (3.4.2) or program to identify its GHG emissions (3.1.6) and GHG removals (3.1.6) in line with the needs of its intended users (3.4.4) Purpose.

7. Organizational boundary

activity or facility within an organization (3.4.2) that can exercise operational or financial control or the classification of an equity stake

8. Reporting boundary

Resulting from GHG emissions (3.1.5) or GHG removals (3.1.6) reported within the organization's boundaries (3.4.7) and significantly as a result of the organization's (3.4.2) operations and activities Classification of indirect emissions.

9. <u> **査證(verification)**</u>

The process of evaluating a statement based on historical data and information to determine whether the statement is true and correct and meets the criteria.

10.確證(validation)

The process of evaluating the reasonableness of assumptions, constraints and methods to support a statement about the results of future activities.

11. 査證者(verifier)

competent and impartial person with responsibility for performing verification (3.4.9) and reporting

12.確證者(validator)

Competent and impartial person with responsibility for performing assurance (3.4.10) and reporting

13.保證等級(level of assurance)

Reliability of Greenhouse Gas Statement (3.2.5) 。

03 Basic procedures for greenhouse gas inventory operations

✓kickoff meeting

- ✓Confirm the objects to be checl and the check specifications that must be met or referred to
- ✓ boundary setting
- ✓Identification of emission sourc
- ✓Calculation of emissions
- ✓ Documentation and Records

kickoff meeting

- Calculation of greenhouse gas emissions is the core basis for carbon reduction
- Inventory of energy and resource consumption from all operating activities of the enterprise
- The data to be collected and consolidated across different departments within the organization
- Cross-departmental cooperation is required
- Ideal practice: hold kick-off meeting
- The Commitment of Corporate Executives
- Form a promotion group
- Cohesively execute the consensus
- Ensure that the inventory operation is promoted smoothly

Confirm the objects to be checked and the check specifications that must be met or referred to

- Examine the standards that the business belongs to at this stage or in the future to meet
- Draft regulations or notices issued by government agencies
- International Supply Chain Requirements
- Voluntary participation in relevant international carbon reduction initiatives

盈笪對家	說明	須符合或參考之盤查規範
	據以掌握我國溫室	• 溫室氣體排放量盤查登錄管
-)環保署公告	氣體排放情形,為	理辦法;
納管事業	下階段溫室氣體管	• 本指引第三篇內容。
	理預作準備	
	揭露温室氣體排放	· 同屬金管會及環保署納管事
	量等資訊,落實企	業,應依環保署規範及本指
	業永續發展責任	引辦理;
二)金管會指定		• 非環保署納管事業,於國內
揭露對象		部分則依金管會規範辦理,
		國外部分依當地國規範,倘
		當地國未規範者依國際標準
		執行。
	廠商要求	・溫室氣體盤查議定書(GHG
三)跨國企業或		Protocol);
國內產業供		 企業價值鏈(範疇三)標準
應鏈中之利		3;
害關係人		• ISO 14064-1:2018;
		• CNS 14064-1:2021 •
	瞭解自身溫室氣體	·溫室氣體盤查議定書(如
	排放情況	GHG Protocol);
四)自願性參與		· 企業價值鏈 (範疇三)標
者		準;
		• ISO 14064-1:2018;
		• CNS 14064-1:2021 •
 二)金管會指定 揭露對象 三)跨國企業或 國產業供 應關強中之之利 害關係人[#] 四)自願性參與 者 	廠商要求 廠商要求 瞭解自身溫室氣體 排放情況 F游客戶或國際產業公園	 非環保署納管事業,於國部分則依金管會規範辦理國外部分依當地國規範,當地國未規範者依國際標執行。 溫室氣體盤查議定書(GProtocol); 企業價值鏈(範疇三)標³; ISO 14064-1:2018; CNS 14064-1:2021。 溫室氣體盤查議定書GHG Protocol); 企業價值鏈(範疇三) 準; ISO 14064-1:2018; CNS 14064-1:2018; CNS 14064-1:2018; 金業價值鏈(範疇三) 準; ISO 14064-1:2018; CNS 14064-1:2018; CNS 14064-1:2018;

Boundary setting

- According to the aforementioned norms to be followed, define the scope to be checked
- The entire enterprise group, a single business or subsidiary, a certain office building, a specific production process, a specific product or service
- Enterprises that have been approved by the Environmental Protection Agency
- The inspection boundary of managed enterprises is set to the geographical boundary covered by the control number issued by the Environmental Protection Agency
- And according to the operation control law, it is divided into units or procedures of direct emissions or energy indirect emissions.
- The FSC checks the border
- to be consistent with financial statements
- There is no regulation on whether the subsidiary' s greenhouse gas emissions should be included in the statistics by the financial control method, the operation control method or the equity ratio method.
- , requiring that all subsidiaries within the enterprise must be consistent.
- For those who meet other inspection specifications, the boundary setting may be different
- Carbon Disclosure Project (CDP)
- It is up to the enterprise to decide whether to set the boundary to be inspected based on the financial control law, the operation control law or the equity ratio method.
- The policy guidelines of government agencies or the goal or schedule of net-zero emission reduction in the international supply chain may gradually adjust the inventory boundary according to different stages

Identification of emission sources

- Greenhouse Gas Emission Category
- Direct emissions, energy indirect emissions, and other indirect emissions
- Types of emission sources included in each emission category

Direct Greenhouse Gas Emissions (Scope 1)

- Refers to direct emissions from a process or facility
- Fossil fuels are used in factory boilers, process operations or employee cafeterias
- Emissions from raw materials
- Emissions from the use of fossil fuels in transport
- And fugitive discharge of refrigerants from air conditioners and drinking water equipment
- Direct emissions of ISO14064-1:2018 or CNS 14064-1:2021
- Includes land use and land-use change and forestry
- Among them, land use and land use change and forestry are not required by the Environmental Protection Agency

- Energy Indirect Greenhouse Gas Emissions (Scope 2)
- Refers to indirect emissions from energy utilization using electricity or steam
- Other indirect greenhouse gas emissions (Scope 3)
- Greenhouse gas emissions from business activities
- The source of emissions is not owned or controlled by the undertaking
- e.g. leasing, outsourcing, employee commuting, business travel
- Other indirect emissions from activities such as upstream and downstream transportation and distribution.

Applicable inspection scope for each inspection object

		Check scope	Direct	Indirect Emissions				
Check ob	ject		Emission	Energy Indirect Emissions	Other Indirect Emissions			
(1) The Environmental Protection Agency announces the management business			0	0	×			
(2) Targets designated by the FSC			0	0	×			
(3) Stakeh chain enterp ind	older of mu rises o ustrie	s in the supply ultinational or domestic s Note 1	0	\bigtriangleup	\bigtriangleup			
(4) Volu	intary	participants	0	\triangle	\triangle			

 \circ indicates that it must be implemented; \triangle indicates that it depends on the purpose of the investigation; x indicates that it does not need to be implemented (not necessary, but it can also be included if the business needs it).

Note 1: Upstream suppliers, downstream customers or international industry associations. Note 2: For the classification comparison between the Environmental Protection Agency and ISO14064-1:2018 (or CNS14064-1:2021) and the Greenhouse Gas Inventory Protocol (GHG Protocol), please refer to Appendix 1.

Emission calculation and documentation

- Calculation of greenhouse gas emissions within the boundary
- Deciding how to calculate emissions
- Emission coefficient method, mass balance method and direct monitoring method
- Collect activity data
- Choose an Appropriate Emission Factor
- Calculate Greenhouse Gas Emissions

Collect activity data

- direct discharge
- Collect usage or purchase of fuel and process input materials
- Fuel: such as natural gas, coal, fuel oil
- Process Input Materials
- Such as coke, fluorine-containing gas, etc.
- Fertilizers, pesticides, etc.
- information acquisition
- Purchasing documents
- It is better if the instrument directly measures the usage of fuel or materials

資料來源: 農傳媒 https://www.agriharvest.tw/archives/61765

Energy indirect emissions

- Outsourced electricity or outsourced steam
- The acquisition of activity data will be based on the electricity or steam charge records provided by suppliers (public electricity sales companies or other electricity or steam suppliers).
- other indirect emissions
- Refer to CNS 14064-1:2021, ISO 14064-1:2018 or GHG Protocol's corporate value chain (category 3) standards
- Select appropriate data according to the items to be quantified
- For example, the activity data of business trips can be counted using the travel statistics table or the transportation expense receipts written off by accounting
- Activity data on waste generated in operations, recoverable waste disposal volume, etc.

Choose an Appropriate Emission Factor

- Greenhouse gas emission factor of fuel
- You can refer to the latest version of the emission factor released by the designated information platform of the Environmental Protection Agency
- When an enterprise has its own factory-related parameters (such as calorific value or carbon content) to calculate emissions, it should provide relevant certification documents (such as test reports or information provided by suppliers) before use.
- The emission coefficients of purchased electricity and purchased steam for energy indirect emissions shall, in principle, use the electricity carbon emission coefficients and steam emission coefficients provided by the supplier for the current year.
- For other indirect emission emission coefficients, select the appropriate emission coefficients according to the quantification category
- Business trips can choose appropriate emission factors according to the type of transportation they take
- If you take the Taiwan High Speed Rail or Taiwan Railway, you can check the carbon footprint emission coefficients on the official websites
- For the waste generated in operation, please inquire about the carbon footprint emission coefficient of the unit that assists in the disposal
- Information such as carbon footprint emission factors can be found on the Environmental Protection Agency's product carbon footprint information website

Calculate Greenhouse Gas Emissions

- Differences of seven greenhouse gases in the degree of greenhouse effect and climate shock
- Global warming potential (GWP)
- Individual GHG emissions converted to metric tons of carbon dioxide equivalent (CO2e)
- Global warming potential is assessed on a hundred-year basis
- Carbon dioxide GWP set at 1
- Compare the effect of each greenhouse gas on surface warming over a period of time (usually 100 years)
- The 100-year GWP of methane (CH4) is 21: Taking 100 years as a comparison time, the global warming effect of methane is 21 times that of carbon dioxide
- Summarize the greenhouse gas emission equivalents of each emission source

Documentation and Records

- Record the methods, data, procedures, systems, assumptions and estimates related to the inventory
- As an internal record, and to provide external verification or verification requirements.
- Boundary setting and adoption principles for business decisions
- Identification of Greenhouse Gas Emission Sources
- Quantification method of emissions from each emission source
- Selection of Quantitative Data
- Relevant procedures for quality management and information management of greenhouse gas emissions inventory

04 Verification, registration or disclosure of interrogation results

- According to its inventory standard business inspection results
- Verified by a third-party inspection agency
- The Environmental Protection Agency designated information platform to log in
- Complete the inventory and login operation on the designated information platform before the end of August every year
- The annual inventory emission information of managed enterprises is disclosed on the information platform designated by the Environmental Protection Agency
- According to the requirements of the Financial Supervisory Commission to disclose
- The inspection boundary must be consistent with the scope of the financial statements
- Emissions information will be disclosed in its annual report.
- Responding to supply chain requirements of multinational companies or other voluntary inspections
- Decide whether to verify, log or disclose according to its specifications or its own wishes

盤查	對象	查證	登錄 ^{#1}	揭露 ^{#2}
(一)環保署公告納	管事業	0	0	0
(二)金管會指定揭言	露對象	0	×	0
(三)跨國企業或國 之利害關係人 [#]	內產業供應鏈中 ^{■4}	Δ	\bigtriangleup	\bigtriangleup
	碳標籤	0	0	0
(四)自願性參與者	碳中和	\bigtriangleup	\bigtriangleup	\bigtriangleup
	CDP	X ^{## 3}	0	0
	SBTi	×#* 3	0	0
	自我檢視排放量	x	x	x

○表示必須執行;△表示視其盤查目的;X表示無須執行(非必要)。

註 1:登錄是指將盤查之訊登載於電子化系統上,泛指各類系統平台,不局 限於國家溫室氣體登錄平台。

註 2:揭露泛指公開於任何網站、平台或文件上,可查找相關排放資訊、減 量目標或評等結果。

註 3:CDP 未要求盤查數據須查證,但查證與否會影響評分結果;SBTi 未強 制要求數據須經查證,但經查證其減量目標較易審核通過。

註 4:上游供應廠商、下游客戶或國際產業公協會。

<u>CDP: Carbon Disclosure Project</u> <u>SBTi: Science Based Targets Initiative</u>

Inventory and case description

Explain the simple inventory process, the greenhouse gas emission calculation tool provided by the Environmental Protection Agency, the complete inventory model, and illustrate the calculation of emissions by schools and agricultural enterprises with actual cases

Inventory and case description

4

Self-calculation of small and medium-sized manufacturing and service industries

The Environmental Protection Agency announced that it should check the inventory operation procedures of the emission sources of the registered greenhouse gas emissions

ISO14064-1:2018 Inquiry Operation Procedures and Cases

Simple Calculation Tool for Greenhouse Gas Emissions

- Understand your own greenhouse gas emissions
- Simplified inventory procedures and trial calculation tools
- EPA National Greenhouse Gas Logging Platform Emission Calculation Tool https://ghgregistry.epa.gov.tw/ghg_rwd/Main/Index
- The carbon emission allowance provided by the Industrial Bureau of the Ministry of Economic Affairs is easy to calculate
- http://pj.ftis.org.tw/CFC/CFC/Index
- The carbon emission estimation tool provided by the Small and Medium-sized Enterprise Division of the Ministry of Economic Affairs: https://scmp.itri.org.tw/smepass/WebPage/calaprobably.aspx
- Refining its greenhouse gas inventory work
- The Environmental Protection Agency announced the inspection procedures to be followed by the objects under management

01 Small and medium-sized manufacturing and service industries

- small and medium manufacturing
- boundary setting
- Identification of emission sources
- Calculation of emissions
- service industry
- boundary setting
- Identification of emission sources
- Calculation of emissions

01-1 Small and medium-sized manufacturing industry (1) Boundary setting

- Small and medium-sized manufacturing industries can set inspection boundaries based on demand
- Take the enterprise or a single factory as the inspection boundary
- Take a single address as the boundary: Company A can regard its office building, the first factory or the second factory as a single inspection boundary
- Take company A as the boundary of the investigation

Small and medium-sized manufacturing industry (2) Identification of emission sources

- Major sources of greenhouse gas emissions
- Related equipment or facilities used by electricity
- Some sources of emissions come from emergency generators, boilers, and official vehicles that use fossil fuels (such as liquefied petroleum gas, natural gas, heavy oil, gasoline, diesel, or coal, etc.)
- Refrigeration or air-conditioning equipment (refrigerants used) and fire extinguishers with fluorine-containing gases.
- A small portion of emissions come from the manufacturing process
- Surface treatment of metals and their products by carburizing, use of specific gas cylinders or carbon dioxide welding, etc.
- Other sources of indirect greenhouse gas emissions
- Such as employee commuting, business travel, and cargo transportation or distribution, etc.

Small and medium-sized manufacturing industry (3) Calculation of emissions

- Emissions from emission sources are in annual units
- First collect the annual consumption of fossil fuels, refrigerants, purchased electricity and purchased steam from various emission sources
- Preliminary estimate of greenhouse gas emissions from fossil fuel combustion and energy indirect emissions throughout the year
- Greenhouse gas emissions calculation tool, easy calculation of greenhouse gas emissions

Common Greenhouse Gas Emission Sources and Activity Data Sources of Small and Medium Manufacturing Industries

category	Emission pattern	Emission source (corresponding activity/equipment type)	Raw (combustible) materials	Activity Data Sources
direct	Stationary Fuel Combustion Source	 Power generation equipment, such as: emergency generators; Heating equipment, such as: boilers, heating furnaces, etc.; Restaurant gas stove use, such as: natural gas or liquefied petroleum gas. 	 Diesel, natural gas, barreled gas. 	Receipts for purchases or fuel expenses, etc.
uischarge	Sources of Process Emissions	 Carbon dioxide welding, acetylene cutting; Surface treatment of metal and its products by carburizing. 	 Carbon dioxide, acetylene, etc. carbon dioxide, methane, etc. 	Purchase quantity and weight of steel cylinders, etc.
	mobile combustion source	Emissions caused by the combustion of fuel used in transportation equipment, such as official vehicles and shuttle vehicles (not leased).	Petrol and diesel.	Fuel receipts, fuel card records, etc.
	fugitive emission source	 Refrigerants for freezing, refrigerating or air- conditioning equipment; Fire Extinguisher Emission of CO2 or fluorinated gases. 	Refrigerant.fire extinguisher.	 Refrigerant annual filling quantity; Number of fire extinguishers.
Energy indirect emissions	purchased electricity	 Mechanical equipment that uses electricity, such as ice water hosts, air-conditioning equipment, lighting, photocopiers, or electric vehicles, includes renewable energy and non-renewable energy. 	 Electricity from non- renewable sources. Renewable energy electricity. 	Electricity fee receipt, green electricity transfer supply receipt據。
	outsourced steam	Use steam or heat mechanical equipment.	• steam.	Bills of charge or traffic records.

Example 1 (Small and Medium Manufacturing)

- proposition
- Factory A has its office located in the factory building
- The factory has a gas boiler that uses natural gas as fuel
- Several stackers (using diesel) are used to move related goods
- Install 3 air-conditioning units in the office
- In addition to purchasing electricity from Taipower (public electricity sales industry)
- Obtain renewable energy certificates and electricity through transfer.
- Please check the operation process according to the above
- Identify the 111-year greenhouse gas emission sources of Factory A
- Activity Data Information
- Calculate its greenhouse gas emissions.

Step 1. Sources of activity data of raw (combustion) materials and their consumption

- According to the table of common sources of greenhouse gas emissions and their activity data in small and medium-sized manufacturing industries
- Identify the sources of greenhouse gas emissions from Factory A
- The source of activity data and the consumption of each raw (fuel) material are shown in the table below.

project		direct discharge	indirect emissions							
			energy indirect							
Emission	Gas boiler	Transport	Refrigerant filling	Factory	Office	Renewable				
source	(natural gas)	equipment (diesel)	(R410A)	electricity	electricity	Energy Vouchers and Electricity				
Activity Data Sources	natural gas bill	Fuel record (receipt)	Purchase receipt (annual fill)	Taipower electricity bill	Taipower electricity bill	Renewable energy certificate or green power transfer receipt				
Usage amount	99 thousand cubic meters	0.33 fairness	0.002 metric tons	14,987 thousand degrees	3,490 kWh	5 thousand degrees				
再生能源憑證	再生能源憑證(Renewable Energy Certificate, REC)									

Step 2 - Calculate emissions using the online GHG emissions calculator

- Use the greenhouse gas emission calculation tool to calculate its direct and energy indirect greenhouse gas emissions
- For the renewable energy certificates and electricity used by factory A, the emission factor can be regarded as 0, so no emission is generated
- The electricity purchased from Taipower (public electricity sales company) needs to calculate its energy indirect greenhouse gas emissions.
- Instructions
- 1. Add the aforementioned raw (combustible) materials and their consumption, and initially calculate the greenhouse gas emissions, using the preset coefficients of the Environmental Protection Agency to calculate

| 排放量試算

範疇別	排放型式	原燃物料代碼	原燃物料名稱	活動數據 (小數4位)	活動數據單位
直接	E (燃料燃燒)	050002	天然氣	99.0000	千立方公尺/年

備註:

排放係數類型可改為「自訂」,自行輸入排放係數值後,排放量與排放當量即自動運算。

The first data is completed as follows

排放量試算列表

註:本排放量試算,係數來源採用溫室氣體排放係數管理表6.0.4版。

總排放當量彙總(公噸CO2e/年):186.196

													新增資料	4 🗵	匯出csv 匯出統	記計表csv	返回首頁
序號	範疇別	排放 型式	原燃物料 代碼	原燃物料 名稱	產生 CO ₂	產生 CH ₄	產生 N ₂ O	產生 HFCs	產生 PFCs	產生 SF ₆	產生 NF3	活動數據 (小數4位)	活動數據 單位	屬生 質能 源	排放當量(公噸 CO ₂ e/年)不含生 質(小數4位)	生質排放當 量(公噸 CO ₂ e/年) (小數4位)	ā
1	直接	燃料 燃燒	050002	天然氣	v	v	v					99.0000	千立方 公尺/年	否	186.1964	0.0000	刪除
2	直接	移動	170006	柴油	v	v	v					0.3300	公秉/年	否	0.8600	0.0000	刪除
3	直接	逸散	GG1814	冷媒- R410a, R32/125 (50/50)				v				0.0020	公噸/年	否	4.1760	0.0000	刪除
4	間接	電力 使用	350099	其他電力	v							14,987.0000	千度/年	否	7,628.3830	0.0000	刪除
5	間接	電力 使用	350099	其他電力	v							3,490.0000	千度/年	否	1,776.4100	0.0000	刪除
6	間接	電力 使用	GG3502	REC登載電力 使用-電證合 一	v							5,000.0000	千度/年	否	0.0000	0.0000	刪除

註:本排放量試算,係數來源採用溫室氣體排放係數管理表6.0.4版。

總排放當量彙總(公噸CO2e/年):9,596.025

Downloadable CSV file archive

▌ 溫室氣體排放型式排放量統計表

排放類型	排放源型式	各排放型式排放當量(公噸CO ₂ e/年) (小數4位)	各排放型式占比(%) (小數2位)
	固定(燃料燃燒)	186.1964	1.94
	製程	0.0000	0.00
直接	移動	0.8600	0.01
	逸散	4.1760	0.04
	小計	191.2324	1.99
能源間接	外購電力	9,404.7930	98.01
總排放當量彙總	!(公噸CO₂e/年) (小數3位)	9,596.025	100.00

註1:各排放型式占比(%):此值由七種溫室氣體總量與各排放型式計算四捨五入取至小數2位,可能會出現四捨五入進位的些許誤差。 註2:依事業排放量統計及使用習慣,本署將電力排碳係數之單位由「公斤 CO2 e/度」轉換為「公噸 CO2 e/千度」,於本平台試算工具輸入使用電力活動數據的單 位應為「千度/年」。

01-2 Service Industry _ Characteristics of Carbon Inventory

- ✓ Inception meeting held
- \checkmark Deciding to check the boundaries
- ✓ The service industry is not yet under the management of the Environmental Protection Agency
- ✓ If the supply chain does not require the adoption of specific inventory specifications, it can be compared with small and medium-sized manufacturing industries to simplify its greenhouse gas inventory procedures to boundary setting, emission source identification, and emission calculation.
- \checkmark Main emission types of service industry
- ✓ Indirect energy emissions in office space, leased storage space, upstream and downstream logistics and transportation, leased cloud servers
- ✓ If logistics and transportation are emission sources owned by the service industry, this part is classified as direct emissions or energy indirect emissions.
- \checkmark Description of other indirect emissions
- ✓ Service industries disclose other indirect emissions in public CSR reports
- ✓ Contribute to the planning of follow-up service industry reduction actions

Service Industry (1) Boundary Setting

- service sector boundary setting
- Select the appropriate inspection boundary according to its inspection purpose
- Therefore, the service industry can use the "single business base under the enterprise" or "enterprise" as the boundary for inspection.
- The current common boundary setting of the service industry mostly takes the "enterprise" as the unit for inspection

Service Industry (2) Identification of Emission Sources

✓ Statistical Classification of Industries by the Accounting and Accounting Office of the Executive Yuan

✓ Service industries include accommodation and catering, publishing/video production/communication and information and communication services, finance and insurance, compulsory social security real estate, professional/scientific and technical services, support services, education, healthcare and Social work service industry and art, entertainment and leisure service industry, etc.

✓ Secondary sources of emissions: direct greenhouse gas emissions

- Emergency generators and official vehicles using fossil fuels (such as natural gas, gasoline and diesel, etc.)
- ✓ Refrigeration or air conditioning equipment (refrigerants used) or fire extinguishers with fluorine-containing gases
- ✓ Main sources of emissions: energy indirect emissions and other indirect emissions
- ✓ Energy indirect emissions mainly come from related equipment or facilities using electricity
- ✓ Other indirect emissions, according to the CSR report
- ✓ Employee commuting, business travel, and cargo transportation or distribution with high availability
- ✓ It is difficult to obtain data on other indirect emissions
- ✓ Refer to ISO 14064-1:2018 or CNS 14064-1:2021 to identify indirect emissions that need to be checked.

✓ Direct greenhouse gas emissions, such as emergency generators using fossil fuels (such as natural gas, gasoline, diesel, etc.), official vehicles, and refrigeration or air-conditioning equipment (refrigerant used) or fire extinguishers with fluorine-containing gases should also be included.

(3) Calculation of Emissions Common sources of greenhouse gas emissions in the service industry and their activity data sources

category	Emission pattern	Emission source (corresponding activity/equipment type)	Raw (combustible) materials	activity data source
	fixed fuel combustion source	 Power generation equipment, such as: emergency generators; Restaurant gas stove use, such as: natural gas or liquefied petroleum gas. 	• Diesel, natural gas, barreled gas	• Receipts for purchases or fuel charges
direct discharge	mobile combustion source	• Emissions caused by the combustion of fuel used in transportation equipment, such as: official vehicles, shuttle vehicles (not leased), and operating vehicles of logistics companies2, etc.	Petrol and diesel	Fuel receipts, fuel card records
	fugitive emission source	 Refrigerants for freezing, refrigerating or air- conditioning equipment; Fire Extinguisher Emission of CO2 or fluorinated gases. 	Refrigerant;fire extinguisher.	 Annual filling volume of refrigerant; Number of fire extinguishers.
Energy indirect emissions	purchased electricity	• Mechanical equipment that uses electricity, such as ice water hosts, air-conditioning equipment, lighting, photocopiers, or electric vehicles, includes renewable energy and non-renewable energy.	 Electricity from non-renewable sources. Renewable energy electricity. 	 Electricity receipt Green Power Transfer Receipt °

2 The property rights of the vehicle are owned and controlled (owned) by the logistics operator

other indirect emissions

Emission source (corresponding activity/equipment type)	Raw (combustible) materials	Activity Data Sources
 Upstream and downstream transportation and 	 upstream and downstream 	 fuel consumption;
distribution: upstream and downstream transportation	Gasoline, diesel or electricity used	 Transportation distance
and distribution of goods, such as emissions from leased	in transportation and distribution,	or transportation fee amount
vehicles Note 1 (vehicles not owned by the enterprise	business travel, employee commuting,	(according to the type of
performing the inventory);	etc.	transportation).
 Business travel; employee commuting. 		
 Discharge of waste generated during operation, such as 	:• Disposal of emissions from	Waste removal volume.
general waste (landfill, incineration or biological treatment)	transportation or burial of waste,	• The distance of the waste
recyclables (transportation discharge) °	generated during operations.	removal route.
• Emissions from upstream leased assets, such as	• Emissions caused by related	 Refrigerant replenishment
leased drinking water dispensers, chilled water hosts	maintenance such as leakage of	for leased drinking water
or photocopiers, etc.	refrigerants from leased water	dispensers, ice water hosts,
	dispensers and chilled water hosts.	photocopiers, etc.

Note 1: If it is a long-term lease by a company and pays for oil, it can be included in direct emissions under operational control considerations.

Example 2 (finance and insurance industry)

 \checkmark E Bank has a total of 20 branches in Taiwan

- ✓ The main business model is to handle various deposits and loans for customers in its branches, entrust managers with trust information deposits, and handle domestic foreign exchange and other businesses
- ✓ The main source of greenhouse gas emissions is the equipment using electricity in the branch
- ✓ Chilled water hosts, air-conditioning equipment, lighting, photocopiers, etc.;
- ✓ Bank E provides official vehicles for senior executives to facilitate inspections of branches
- ✓In order to expand business, employees often have business trips, and considering the convenience, most of them use high-speed rail as a means of transportation.

✓ Identify E-Bank

✓ 111 years of greenhouse gas emission sources and their activity data information
 ✓ Calculate its greenhouse gas emissions.

Step1. Collect the activity data source and consumption of each raw (fuel) material

project	direct discharge		indirect emissions			
			energy indirect	other indirect		
Emission source	Official vehicle oil (gasoline)	Refrigerant filling (R410A)	Branch electricity	Employee Business Travel		
activity data source	Refueling records of each branch (receipt) aggregation	Branch purchases According to (annual filling volume)	Branch Electricity single collection	travel statistics or Accounting write-off documents		
Usage amount	56,213 liters (=56.213 justice)	10 kg (=0.01 metric ton)	14,211,223 degrees (=14,211 thousand degrees)	High-speed rail mileage: 5,430,879 km		

Step2-Use the online greenhouse gas emissions calculation tool to calculate "direct emissions and energy indirect emissions"

排放量試算		排放量試算	
	返回首頁		返回首頁
<mark>*</mark> :必填欄位		<mark>*</mark> :必填欄位	
範疇別	直接	範疇別	直接
溫室氣體排放來源 *	燃油~	溫室氣體排放來源 *	逸散/含氟氣體 ~
原燃物料代碼 *	170001 代碼查詢 Q	原燃物料代碼 *	GG1814 代碼查詢 Q
原燃物料名稱	車用汽油	原燃物料名稱	冷媒-R410a,R32/125 (50/50)
活動數據 * (小數4位)	56.213 活動數據單位: 公秉/年	活動數據 * (小數4位)	0.01 活動數據單位: 公噸/年
是否屬生質能源 *	否	是否屬生質能源 *	否 ~
返回排放量試算列表	下一頁 清空	返回排放量試算列表	下一頁 清空

排放	汝量 詞	式算	列表															ion
												新增資料	匯出	csv	匯出統計表	icsv 3	返回首頁	_
序號	範疇 別	排放型式	原燃物 料 代碼	原燃物料 名稱	產 生 CO2	產 生 CH4	產 生 N ₂ O	產生 HFCs	產生 PFCs	產 生 SF6	產 生 NF3	活動數據 (小數4位)	活動數 據單位	屬生質能源	排放當量 (公噸 CO ₂ e/年) 不含生質 (小數4 位)	生質 排當 (公理 (公2e/ 年) (小數 4位)	Ē	
1	直接	移 動	170001	車用汽油	v	v	v					56.2130	公秉/ 年	否	132.7456	0.0000	刪除	
2	直接	逸 散	GG1814	冷媒- R410a, R32/125 (50/50)				v				0.0100	公噸/ 年	否	20.8800	0.0000	刪除	
3	間接	電力使用	350099	其他電力	v							14,211.2230	千度/ 年	否	7,233.5125	0.0000	刪除	A B B B

註:本排放量試算,係數來源採用溫室氣體排放係數管理表6.0.4版。

總排放當量彙總(公噸CO2e/年):7,387.138

■ 溫室氣體排放型式排放量統計表

排放類型	排放源型式	各排放型式排放當量(公噸CO ₂ e/年) (小數4位)	各排放型式占比(%) (小數2位)
	固定(燃料燃燒)	0.0000	0.00
	製程	0.0000	0.00
直接	移動	132.7456	1.80
	逸散	20.8800	0.28
	小計	153.6256	2.08
能源間接	外購電力	7,233.5125	97.92
總排放當量彙總	શ(公噸CO₂e/年)(小數 3位)	7,387.138	100.00

註1:各排放型式占比(%):此值由七種溫室氣體總量與各排放型式計算四捨五入取至小數2位,可能會出現四捨五入進位的些許誤差。

註2:依事業排放量統計及使用習慣,本署將電力排碳係數之單位由「公斤 CO2 e/度」轉換為「公噸 CO2 e/千度」,於本平台試算工具輸入使用電力活動數據的單位應 為「千度/年」。

Step 3 - Calculating other indirect GHG emissions

- This sample business travel takes the high-speed rail as an example
- Calculation of other indirect emissions from employee business travel
- Carbon Footprint Emission Coefficient of Passenger Transportation Between Stations Using Taiwan High Speed Rail or Carbon Footprint of Transportation Services
- (32 grams of CO2e/person-emissions per kilometer (per personkm)), as explained below.

5,430,879 公里 × 32 克 CO₂e/每人-每公里 = <u>173.7885</u> 公噸 <u>CO₂e</u>

- 合計E 銀行 111 年
 - 直接排放量為 153.6265 公噸 CO2e

02-Environmental Protection Agency announces that the inventory operation procedures for the emission sources of registered greenhouse gas emissions should be checked

- 1. Boundary setting
- 2. Identification of emission sources
- 3. Calculation of Emissions
- 4. Data Quality Management
- 5. Documentation and Records

1. Boundary setting

- All emission sources that the enterprise can control its operation are included in the inventory boundary
 Avoid double counting, omission or misleading situations when aggregating emission data
- After the inventory boundary is set, the enterprise shall classify the emission sources within the inventory boundary
- Direct GHG emissions, energy indirect GHG emissions, and other indirect GHG emissions
- The Environmental Protection Agency announced that the management business only needs to identify and quantify direct and energy indirect greenhouse gas emission sources at this stage
- The identification and quantification of other indirect greenhouse gas emission sources are not necessary information for the EPA

Direct and Indirect Energy Description

(1) Direct greenhouse gas emissions refer to direct emissions from processes or facilities

Such as: emissions from factory boilers or process operations, and fugitive emissions of refrigerants from fixed fuel combustion sources owned or controlled by the organization, process emissions, transportation emissions, or air-conditioning equipment.

(2) Energy indirect greenhouse gas emissions

Refers to indirect emissions from energy utilization using electricity or steam.

(3) Other indirect greenhouse gas emissions (non-essential)

Refers to the greenhouse gas emissions generated by business activities, which are not self-owned or controllable by the business, such as other indirect emissions from leasing, outsourcing business, employee commuting and other activities.

2. Identification of emission sources

- Identify emission sources that emit greenhouse gases within the scope of boundary setting
- According to Article 3 of the Measures for the Administration of Inquiry and Registration
- Environmental Protection Agency Announces Greenhouse Gas Types of Managed Enterprises
- carbon dioxide (CO2)
- Methane (CH4)
- Nitrous oxide (N2O)
- Hydrofluorocarbons (HFCs)
- Perfluorocarbons (PFCs)
- Sulfur hexafluoride (SF6)
- Nitrogen trifluoride (NF3)
- Other substances announced by the central competent authority

(1) Source types of direct greenhouse gas emissions

- Stationary fuel combustion source: refers to the fuel combustion of stationary equipment
- Boilers, furnaces, steam turbines, heating furnaces, incinerators and diesel generators, etc.
- Sources of Process Emissions: Emissions from physical or chemical processes
- Carbon dioxide (CO2) produced by the catalytic cracking process in the oil refining process, perfluorocarbons (PFCs) produced when cleaning pipelines or etching in the wafer manufacturing process of the semiconductor industry, and smelting coal in the steelmaking process of the iron and steel industry (as a reducing agent) emissions, etc.
- Mobile combustion source: refers to the fuel combustion of transportation equipment
- Forklifts, cars, trucks and other means of transport.
- Fugitive Emission Sources: Intentional and Unintentional Emissions
- Methane emitted from equipment joints, seals, packing leakage, refrigerant escape, wastewater treatment plants or gas processing equipment, etc.

(2) Source types of energy indirect greenhouse gas emissions

- Purchased electricity
 - ✓ Public electricity sales industry: refers to the electricity provided by the public electricity sales industry (that is, Taiwan Power Co., Ltd.) .
 - \checkmark Others: The source of electricity is provided by non-public electricity sales industry .
 - \checkmark Renewable energy electricity and certificates
 - Types of renewable energy certificates issued by the Bureau of Standards, Inspection and Quarantine of the Ministry of Economic Affairs
 - ✓ According to Article 3 of the "Renewable Energy Development Regulations"
 - ✓ Including solar energy, biomass energy, geothermal energy, ocean energy, wind power, non-pumped hydraulic power, domestic general waste and general industrial waste
 - ✓ Enterprises can use the above-mentioned renewable energy certificates and the certificate type should be integrated with electronic certificates .
 - ✓ Renewable energy certificates for biomass energy, domestic general waste and general industrial waste, etc., because the emission coefficient cannot be regarded as "0" for calculation
 - ✓ If a business uses renewable energy certificates such as biomass energy, domestic general waste, and general industrial waste, it shall calculate the emission factor by itself according to the type and composition ratio of the biomass energy and waste before using it.
 - ✓ Managed enterprises can obtain the renewable energy certificate of electronic certificate integration in the following ways

The method of obtaining renewable energy certificates for managed enterprises

- Renewable energy power generation industry direct supply or switch to renewable energy
 - Refers to the source of electricity provided by renewable energy through direct supply or transfer from the power transmission and distribution industry .
- ✓ Renewable energy electricity sales industry
 - Renewable energy electricity sales industry supplies green electricity
- ✓ Emission sources that are not production facilities, such as offices and dormitories, are included in the enterprise inventory boundary
 - ✓ When identifying greenhouse gas emissions from purchased electricity, it should be divided into
 - ✓ Emissions from electricity used in the production process (electricity used in the process
 - ✓ Electricity emissions not used in the production process (electricity used in non-processes, such as: electricity used in offices and dormitories)

Direct discharge

Emission pattern	Main emission sources (use of raw (combustion) materials)
	• Power generation equipment (fuel is coal, oil, natural gas, etc.), such as: turbine generator ;
Stationary Fuel	• Steam or heat generation equipment (fuel is coal, oil, natural gas, etc.), such as: steam-electric cogeneration
Combustion Source	equipment, etc.;
	• Heating facilities (fuel is coal, oil, natural gas, biomass fuel, etc.), such as: heaters, boilers, kilns, furnaces, incinerators
	and other fuel-burning equipment or machines, etc.
Sources of Process	• Process facilities with physical or chemical reactions, such as: cement process (limestone), iron and steel process
Emissions	(metallurgical coal), etc.;
	• cutting or repairing (acetylene) ;
	• Greenhouse gas emissions not caused by combustion in process operations, such as: light oil cracking, aromatics plants,
	hydrodesulfurization plants, etc.
mobile combustion	• Emissions caused by the combustion of fuel (such as gasoline or diesel) used in transportation equipment, such as stackers,
source	cranes, official vehicles, fuel tankers, trains, ships, aircraft, etc.
	• Refrigerant escape from air-conditioning or refrigeration equipment (R410A, etc. ;
fugitive emission	• Escape from storage tanks, pipelines, pumps or valves of fuel oil and natural gas ;
source	• Emissions from the use of solvents during cleaning ;
	• Due to annual repairs, such as: pneumatic valve unloading, pipeline or well sinking, storage tank cleaning, etc. ;
	• Abnormal discharge, such as emergency shutdown or pressure relief discharge, etc. ;
	• Use of fire extinguishers (carbon dioxide, sodium bicarbonate) or sprayers, e.g. dry powder fire extinguishers;

Indirect Energy

Category	Emission	Main emission sources (use of raw (combustion)
	pattern	materials)
Energy	Purchased .	Mechanical equipment that uses electricity, including: general
indirect	electricity	outsourced electricity and outsourced renewable energy. Direct
emissions		emissions are counted if electricity is used that is self-produced
		within the boundary.
	Outsourced.	Mechanical equipment that uses steam or heat is counted as direct
	steam	emissions if it uses steam or heat that is self-produced within the
		boundary.

3. Calculation of Emissions

Calculation steps of greenhouse gas emissions

(1) Select the emission calculation method

1. Emission factor method: the most common quantification method

- Use activity data such as raw (fuel) material usage or product output to multiply their corresponding emission coefficients
- Emission calculation method: Multiply the amount friends enhouse gas emissions by its global warming potential

Emission coefficient method: (1) fuel combustion

Annual greenhouse gas emissions (metric tons CO2e) = annual activity data × emission coefficient × $4.1868 \times 10-9 \times$ lower calorific value × warming potential

- \checkmark Annual activity data (metric tons, kilometres, or thousand cubic meters)
 - Measuring data: use instruments to measure raw (combustion) material consumption as annual activity data, such as: coal feeder records fuel coal consumption, gaseous fuel flow meter records data, and scale measurement data for each batch.
 - ✓ Non-measurement data: Since there is no actual consumption or purchase volume documents, it is pushed back through other supporting data. For example: the purchase amount pushes back the original (fuel) material usage
- ✓ Emission factors (kgCO2/TJ, kgCH4/TJ, kgN2O/TJ)
 - ✓ According to IPCC 2006, the greenhouse gas emission coefficients of various fuels (including carbon dioxide, methane and nitrous oxide)
 - ✓ The enterprise develops the greenhouse gas emission coefficients of various fuels by itself, and this coefficient can only be used after being approved by the Environmental Protection Agency
- ✓ 4.1868×10⁻⁹
 - ✓ is the unit conversion factor, 1 kcal = $4.1868 \times 10-9$ TJ.
- Lower calorific value (kcal/kg, kcal/liter or kcal/m3)
 - The lower calorific value refers to the calorific value when the fuel is completely burned and the water vapor in the combustion product exists in the gaseous state, also known as net heat.
- Warming Potential (GWP)

Warming potential

Greenhouse	Lifetime (vears)		Timing of Global Warming Potential Assessments					
gases			20年		100年		500年	
methane	12	(12)	72	(62)	25	(23)	7.6	(7)
Nitrous oxide	114	(114)	289	(275)	298	(296)	153	(156)
HFC-23 (Hydrofluorocarb ons)	270	(260)	12,000	(9400)	14,800	(12,000)	12,200	(10,000)
HFC-134a (Hydrofluorocarb ons)	14	(13.8)	3,830	(3,300)	1,430	(1,300)	435	(400)
sulfur hexafluoride	3200	(3,200)	16,300	(15,100)	22,800	(22,200)	32,600	(32,400)
Perfluorotributyl amine (PFTBA					7,100	[8]		y d
The information in particular	rentheses	s refers to the	TAR [6])					10

Example of Emission Factor Method

- Question: Company A uses fuel oil for 110 years with 1,000 fair
 - \checkmark How much greenhouse gas emissions (in metric tons of CO2e) are produced?
 - ✓ Use the fuel oil emission coefficient of IPCC and the preset lower calorific value of this guideline.

CO2 emission coefficient	CH4 emission factor	N2O emission coefficient	Lower calorific value
(kgCO2/TJ)	(kgCH4/TJ)	(kgN2O/TJ)	(kcal/L)
77,400	3	0.6	9600

- ✓ Annual greenhouse gas emissions (metric tons CO2e) = Annual Activity Data × Emission factor ×
 4.1868 × 10⁻⁹ × lower calorific value × warming potential
- ✓ CH₄年排放量= 1,000(公秉)×3 (kgCH₄/TJ)×4.1868×10⁻⁹×9600(kcal/L)×25= 3.0145 公噸 CO₂e
- ✓ N₂O 年排放量= 1,000(公秉)× 0.6 (kgN₂O/TJ) ×4.1868×10⁻⁹× 9600(kcal/L)× 298= 7.1866 公噸 CO₂e

Annual Greenhouse Gas Emissions =3,110.9599 + 3.0145 + 7.1866 = 3,121.1610 公噸 CO2e

Example 3 (chain retail business)

• C The entire Taiwanese operating base of the retail industry includes 1,200 stores and 1 office building

- Greenhouse gas emission sources include equipment using electricity in stores (such as: commercial refrigeration or refrigeration equipment, air-conditioning equipment, lighting, etc.) and office building electricity,
- Outsourced disposal of store waste and entrusted logistics companies to deliver goods to each store for transportation emissions.
- According to the above-mentioned inventory operation process, identify the 111-year-old C retail industry
 - Greenhouse gas emission sources and their activity data information
 - Calculate its greenhouse gas emissions .

Step 1 - Identify sources of GHG emissions from C retail outlets and offices

Project	Direct discharge	Indirect emissions			
		Energy indirect	Other indired	ct	
Emission	commercial frozen or	Store and Office	Distribution from logistics	Store	
source	refrigerated	Building electricity	center to store	abandoned	
	Equipment (R134A)		Send to transport (diesel)	disposal	
Activity Data	Refrigerant purchase receipt	Collection of	Conversion of	Outsourced	
Sources	(annual fill volume)	electricity bills for	transportation	waste removal	
		stores and office	distance to fuel	volume	
		buildings	consumption	statistics	
Usage	5 metric tons	188,193 thousand	4,593 kiloliters	8,329 mt	
amount		degrees			

Step 2 - Use the online greenhouse gas emissions calculation tool to calculate "direct emissions and energy indirect emissions"

	返回首頁		
		* :必填欄位	
* . 以持期分		範疇別	間接
· 心 _{頃爾位} 範疇別	直接	溫室氣體排放來源 *	電力
溫室氣體排放來源 *	逸散/含氟氣體	原燃物料代碼*	350099 代碼查詢 Q
原燃物料代碼 *	GG1835 代碼查詢 Q	原燃物料名稱	其他電力
百帙物料之瑶	HFC_134a/R_134a,四氟乙烷HFC_134a/R_1		台電電力
		活動數據* (小數4位)	188193 活動數據單位:千度/年
石里J安X1家 (小數4位)	5 活動數據單位: 公噸/年	是否屬生質能源 *	否 ~
是否屬生質能源 *	否 ~	備註:依事業排放量統計	
		度」轉換為「公噸 CO2 e/千	度」,於本平台試算工具輸入使用電力活動數據的單位應為

排放量試算

下一頁

清空

Emissions trial calculation list

新增資料 匯出csv

匯出統計表csv

返回首頁

序號	範疇別	排放型式	原燃物 料 代碼	原燃物 料 名稱	產 生 CO2	產 生 CH4	產 生 N ₂ O	產生 HFCs	產生 PFCs	產 生 SF6	產 生 NF3	活動數據 (小數4位)	活動數 據單位	屬生質能源	排放當量 (公噸CO ₂ e/ 年)不含生 質 (小數4 位)	生質 排放 當量 (公噸 CO ₂ e/ 年) (小數 4位)	â
1	直接	逸 散	GG1835	HFC- 134a/R- 134a, 四氟乙 烷 HFC- 134a/R- 1				v				5.0000	公噸/ 年	否	7,150.0000	0.0000	刪除
2	間接	電力使用	350099	其他電 力	v							188,193.0000	千度/ 年	否	95,790.2370	0.0000	刪除
No tł	Note: For this trial calculation of emissions, the source of the coefficient is Greenhouse Gas Emission Coefficient Management Table Version 6.0.4								"Summary of total emission equivalent (metric to CO2e/year): 102,940.237					tric tons			

Greenhouse gas emission type emission statistics table

Emissi	on type	Type of sou	emission rces	Emission equivalent of each emission type (metric tons CO2e/year) (4 decimal places)	Proportion of emission type (%) (2 decimal places)			
		Station burr	ary (tuel hing)	0.0000	0.00			
Г			Process	0.0000	0.00			
	Direct		Move	0.0000	0.00			
			Escape	7,150.0000	6.95			
			Subtotal	7,150.0000	6.95			
Energy i	ndirect	Purchased electricity		95,790.2370	93.05			
Summary of total emission equivalents (metric tons CO2e/year) (3 decimal places)				102,940.237	100.00			

Note 1: The proportion of each emission type (%): This value is rounded to 2 decimal places by calculating the total amount of seven greenhouse gases and each emission type, and there may be some errors in rounding up. Note 2: According to the statistics of industrial emissions and usage habits, the Department has converted the unit of the electricity carbon coefficient from "kg CO + kWh" to "public factory CO2/kWh", and input the unit of electricity activity data into the trial calculation tool on this platform should be 'thousand degrees/year'

Step 3 - Calculate other indirect GHG emissions

For the transportation from the logistics center to the retail outlets, the emissions are calculated based on the amount of diesel used. Calculation method

- Annual greenhouse gas emissions (metric tons CO2e) = annual activity data × emission factor × 4.1868 × 10-9 × lower calorific value × warming potential
- Diesel emission coefficient provided by IPCC and the preset lower calorific value of this guideline.

CO2 emission coefficient	CH4 emission system	N2O emission coefficient	Lower calorific value (kcal/L)
(kgCO2/TJ)	(kgCH4/TJ)	(kgN2O/TJ)	
74,100	3.9	3.9	8,400

✓ Annual CO2 emission = 4,593(g) × 74,100 (kgCO2/TJ) × 4.1868×10-9× 8,400(kcal/L) × 1= 11,969.5040 metric tons CO2e ✓ CH4 annual emissions = 4,593 (community) × 3.9 (kgCH4/TJ) × 4.1868 × 10-9 × 8,400 (kcal/L) × 25 = 15.7500 metric tons of CO2e ✓ Annual N2O emissions = 4,593 (g) x 3.9 (kgN2O/TJ) x 4.1868 x 10-9 x 8,400 (kcal/L) x 298 = 187.7400 metric tons of CO2e Annual emissions of greenhouse gases5 = 12,172.9940 metric tons of CO2e from distribution and transportation from logistics centers to stores

Emissions from retail waste treatment

- Calculated based on waste disposal volume
 - Annual GHG emissions (metric tons CO2e) = annual activity data × emission factor
- Assume that waste in this example is treated by incineration
 - Waste incineration treatment has an emission factor of 0.36 metric tons CO2e/metric ton of waste
 - Annual GHG emissions from retail waste disposal = 8,329 metric tons × 0.36 metric tons CO2e/metric ton = 2,998.4400 metric tons CO2e
- C Retail 111 years
 - Total direct emissions 7,150 metric tons CO2e
 - Total energy indirect emissions 94,472.886 metric tons CO2e
 - Other indirect emissions are 15,171.434 metric tons CO2e.

Emission coefficient method: (2) process emissions

Definition: chemical or electrolytic reduction of some metal ores, thermal decomposition of substances, etc.

- Such as: processes using carbonates (calcium carbonate CaCO3, magnesium carbonate MgCO3), or manufacturing processes of steel, iron and non-ferrous metals
- The greenhouse gas emissions can be calculated by the input of raw materials or the output of products.
- emissions formula
- Annual greenhouse gas emissions (metric tons CO2e) = annual activity data × emission factor × warming potential
 - Annual activity data (metric tons, kilometers, or thousand cubic meters)
 - Measurement data: The amount of raw materials used is measured by instruments as annual activity data, such as: the data obtained by weighing scales for each batch of materials.
 - Non-measurement data: Since there is no actual consumption or purchase volume documents, it is pushed back through other supporting data. For example: the purchase amount pushes back the usage amount.
 - Emission factor (metric tons CO2/per unit input material or output product)
 - Calculate the emission factor of the raw material by chemical balance formula

Example Process Emissions

- Question
 - Limestone is used in the prevention and control equipment of exhaust gas desulfurization technology in company B's plant
 - Limestone purchases of 50 metric tons in 110
 - How much greenhouse gas emissions (in metric tons of CO2e) are produced?
- Calculate
 - 石灰石吸收煙氣中 SO₂ 的化學平衡式CaCO₃ + SO₂ + 2H₂O → CaSO₃ · 2H₂O + CO₂
 - CaCO₃ 分子量 100 · CO₂ 分子量 44 · 表示 1 mole CaCO₃ 產生 1 mole CO₂
 - 排放係數計算如下:

CO₂ 排放係數 =
$$\frac{1 \text{mole } CO_2 2 \Rightarrow 3}{1 \text{mole } CaCO_3 2 \Rightarrow 3}$$
 = $\frac{44}{100}$ =0.44 公頓 CO₂/公頓 CaCO₃
溫室氣體年排放量 = $50 \ (ton) \times 0.44 \frac{ 公頓CO_2}{ \odot 頓 CaCO_3}$ = 22.0000 公頓CO₂

Emission coefficient method: (3) Calculation of outsourced electricity emissions

- Emissions formula
 - Annual greenhouse gas emissions (metric tons CO2e) = annual activity data × emission factor × warming potential
 - Activity data (thousand degrees)
 - Measuring data: Use instruments to measure electricity consumption as annual activity data, such as: electricity meter record data (electricity bill receipt).
 - Those who use direct or transferred renewable energy should also collect relevant bills for charges.
- Emission factor
 - The source of electricity is a public electricity retailer
 - The emission factor is based on the electricity carbon emission factor announced by the Energy Bureau (metric tons of CO2e/kWh).
 - In principle, the electricity carbon emission coefficient of the year of the inventory is used. If the electricity carbon emission coefficient of the current year has not been announced when the inventory is carried out, the electricity carbon emission coefficient of the previous year can be used.
 - The source of electricity is not a public electricity retailer
 - The emission factor shall adopt the verified emission factor of the current year provided by the supplier
 - For those who use renewable energy for self-generation and self-use, or those who use renewable energy certificates such as solar energy, geothermal energy, ocean energy, wind power, and non-pumped storage hydraulic power, the emission factor is 0 metric tons of CO2e/kWh.
 - Those who adopt renewable energy certificates such as biomass energy, domestic general waste, and general industrial waste, etc., shall calculate their emission factors according to the types and composition ratios of biomass energy and waste before using them.
- Warming Potential (GWP)
 - The Environmental Protection Agency regulates that the global warming potential (GWP) should adopt a centennial scale, and the referenced version is the IPCC AR4 assessment report.
 - The unit of the emission coefficient is "metric ton CO2e/kWh", which means that the emission coefficient has taken the warming potential (GWP) into consideration, so there is no need to multiply the warming potential (GWP).

Examples of Emissions from Purchased Electricity • E Corporation 109 years

- 2,000 kilowatt-hours of electricity purchased by the public electricity sales industry
- 2,000 kilowatt-hours of power transferred from renewable energy power generation companies (supported by the purchased electronic certificate, each certificate is 1,000 kilowatt-hours)
- How much greenhouse gas emissions (in metric tons of CO2e) are produced?
- In 2019, the carbon emission coefficient of electric power was 0.502 metric tons CO2e/kWh, and the emission coefficient of electric certificate integration certificate was 0 metric ton CO2e/kWh
- In 2019, the carbon emission coefficient of electric power was 0.502 metric tons CO2e/kWh, and the emission coefficient of electric certificate integration certificate was 0 metric ton CO2e/kWh
- Illustrate
 - Annual greenhouse gas emissions = 2,000 kWh × 0.502 metric tons CO2e/kWh + 2,000 kWh × 0 metric tons CO2e/kWh (renewable energy certificate coefficient) = 1,004.0000 metric tons CO2e

Emission coefficient method: (4) Calculation of outsourced steam emissions

- Annual greenhouse gas emissions (metric tons CO2e) = annual activity data × emission factor × warming potential
- Annual activity data (metric tons)
 - Measurement data: use instruments to measure steam consumption as annual activity data, such as: flow meter records the consumption of steam input (charge receipt
 - Non-measurement data: Since there is no actual consumption or purchase volume documents, other supporting data are used to push back, such as: the purchase amount pushes back the usage
- Emission factor
 - The steam emission factor shall adopt the emission factor provided by the supplier. (The unit of emission coefficient is metric ton CO2e/metric ton, or the emission coefficients of three types of greenhouse gases, such as: metric ton CO2/metric ton, metric ton CH4/metric ton and metric ton N2O/metric ton)
 - Steam suppliers should calculate their steam emission coefficients using the heat-first method. For detailed calculation methods, please refer to Appendix VI of this guideline.
- Warming Potential (GWP)
 - The Environmental Protection Agency regulates that the global warming potential (GWP) should adopt a centennial scale, and the referenced version is the IPCC AR4 assessment report, and ISO14064-1:2018 references AR6
- If the unit of the aforementioned emission coefficient is "metric ton CO2e/metric ton", it means that the emission coefficient has taken the global warming potential (GWP) into consideration, so there is no need to multiply the global warming potential (GWP)

Example of Purchased Steam Emissions

- E Corporation 109 years
 - Purchased 2,500 metric tons of steam from YY steam plant, and the steam emission coefficient of YY steam plant in 2010 was 0.30867 metric tons CO2e/metric ton
 - How much greenhouse gas emissions (in metric tons of CO2e) are generated?
- Illustrate
 - Annual greenhouse gas emissions =

2,500 metric tons × 0.30867 metric tons CO2e/metric ton = 771.6750 metric tons CO2e

2. Mass balance method

- Definition
- Refers to the balance of the quality of materials and energy in and out, production, consumption and conversion in processes or chemical reactions.
- Reason for adoption
 - It is often difficult to link emissions directly to a single material input in steel plant manufacturing processes or chemical industry manufacturing processes
 - Because its products or wastes contain a lot of carbon (such as: organic chemicals, carbon black, etc.)
 - Therefore, using carbon input and output to calculate emissions is closer to the actual situation

Mass balance method: (1) fuel combustion

Principle description

- Calculation of fuel combustion by mass balance method, only for calculation of CO2 emissions
- Enterprises should still use the emission factor method to calculate CH4 and N2O emissions from fuel combustion.
- Formula: Annual CO2 emissions (metric tons CO2) = annual activity data × 44/12 × carbon content
- Annual Activity Data
 - Measurement data: use instruments to measure the consumption of raw materials and fuels as annual activity data, such as: the measurement data obtained from weighing scales for each batch of raw (fuel) materials.
 - Non-measurement data: Since there is no actual consumption or purchase volume documents, other supporting data are used to push back, such as: the purchase amount pushes back the usage.
- 44/12
 - The molecular weight ratio of carbon dioxide (CO2) to carbon (C) is 3.6667 metric tons CO2/metric ton C .
- Carbon content (%)
 - The carbon content is expressed in mass percentage, and the test report should be provided if the self-tested value is adopted
 - Those who have not tested themselves can use the carbon content provided by the supplier, and should attach the test report or supporting materials provided by the supplier.

Examples of fuel combustion

- Company B used 5,000 metric tons of set binnings coin 3910, how much greenhouse gas emission (in metric tons of CO2e) would it produce?
- Among them, the IPCC's sub-bituminous coal emission coefficient, the low-level calorific value announced by the Environmental Protection Agency, and the carbon content of company B's self-test are quoted, as shown in the following table .

CO2 emission factor	CH4 emission factor	N2O emission factor	lower calorific value	carbon content
(kgCO2/TJ)	(kgCH4/TJ)	(kgN2O/TJ)	(kcal/kg)	(%)
96,100	1	1.5	4,900	53.8

- Illustrate
- Annual CO2 emissions = annual activity data × 44/12 × carbon content
 - Annual CO2 emission=5,000(metric tons) $\times 44/12 \times 53.8(\%) = 9,863.3333$ metric tons CO2e
- Annual greenhouse gas emissions (metric tons CO2e) = annual activity data × emission coefficient × 4.1868 × 10-9 × lower calorific value × warming potential
- CH4 annual emissions=5,000(metric tons)×1 (kgCH4/TJ)×4.1868×10-9× 4,900(kcal/kg)×25= 2.5644 metric tons CO2e
- Annual N2O emissions = 5,000 (metric tons) × 1.5 (kgN2O/TJ) × 4.1868 × 10-9 × 4,900 (kcal/kg) × 298= 45.8517 metric tons CO2e
- Annual Greenhouse Gas Emissions = 9,863.3333 + 2.5644 + 45.8517 = 9,911.7494 metric tons CO2e

3. Direct monitoring method

- Calculate the emissions based on the results of continuous emission monitoring or regular sampling, and measure the concentration of greenhouse gas emissions
- The method of calculating the emission amount based on the exhaust gas concentration and flow rate (as shown in Figure 3-8).
- If there is direct monitoring or regular sampling and measurement of CO2 emissions during the inventory operation, and the amount . If the measuring instrument has regular external calibration, it is recommended to use direct monitoring or regular sampling data. To improv the accuracy of quantitative results and credibility.

(2) Summary of greenhouse gas emissions

- The aforementioned emissions calculation formula is converted into metric tons of carbon dioxide equivalent (metric tons CO2e) using warming potential (GWP)
- Enterprises should summarize the calculation results of each emission source
 - Aggregated emissions should be expressed in metric tons of CO2e and rounded to the third decimal place
 - The inventory is displayed with the third decimal place, or the three decimal places of scientific notation.
- The three greenhouse gases CO2, CH4 and N2O produced by biomass fuel combustion should be quantified
 - The IPCC has stated that the CO2 produced by the combustion of biomass fuels is part of the natural cycle reaction and will not increase the concentration of CO2 in the atmosphere. It only needs to be quantified and listed separately, and does not need to be summarized in the total emissions
 - CH4 and N2O should be quantified and aggregated into total emissions.

4. Data Quality Management

✓ Management Purpose

- ✓ By establishing an enterprise internal inventory information management system to confirm the inventory quality and uncertainty risks of greenhouse gas-related data, so as to improve and ensure the accuracy of greenhouse gas inventory results
- ✓ Management Principles
 - ✓ Qualitative: 1. Confirm that the boundary scope is relevant to the purpose of the inspection, 2. The emission source has been completely identified, 3. The excluded items should be transparently stated
 - ✓ Quantitative: 1. Whether the activity data reference is correct, and save the calculation formula and supporting documents, 2. Whether the emission coefficient is consistent with the activity data unit.
- \checkmark Data quality management: Confirm that its inventory management procedures can effectively identify errors, reduce uncertainties and improve data quality, so as to achieve the goal of continuous improvement, and it is also a reference for inspection agencies to judge data quality.

(1) Calculate the data error level of emission sources

Data Error Level Scoring for Emission Sources

- Activity Data Error Level (A1)
 - Instrument calibration error level (A2)
 - Emission calculation parameters (calorific value or carbon content) error level (A3)
 - Data error level of emission sources (A) = A1 × A2 × A3

Project	1 point	2 point	3 point
Activity Data Error Level (A1)	continuous monitoring	regular sampling	Estimate yourself
Instrument calibration error	The data obtained from the	The data obtained from the instrument	Estimated data other than
level (A2)	instrument measurement performed	measurement performed by the external	measurements
	more than once a year by external	school less than once a year	
	schools		
Emission calculation	In-house development parameters,	Manufacturer supplied parameters or	National Announcement Parameters
parameter error level (A3)	parameters obtained from mass	area announcement parameters	or International Announcement
	balance, or parameters experienced		Parameters
	in the same process/equipment		

(2) Determining the scoring interval based on the error level of the emission source

- After the emission source calculates its data error level, determine the scoring range of the emission source
 - For example: if the data error level is 6, its scoring range is 1.
 - The data quality distribution of emission sources in the plant can be grasped.

Data Error Level(A1 \times A2 \times A3)	1 to 9	10 to18	19 to 27
Scoring range	1	2	3

(3) Calculation of emissions inventory levels

- Calculate the overall average score for the emissions inventory level
 - After calculation and judgment, the product of the error level of each emission source and the proportion of the total emission is accumulated and summed up
 - The supplier checks the quality of the inventory data by himself, and serves as a reference for the direction of future inventory data refinement.

Quantitative Analysis of Uncertainty

Activity Data Uncertainty

- The source of activity data is instrument measurement, such as electric meters, oil gauges, gas meters and other instruments
- Activity data uncertainty upper and lower limits = \pm error value (%) × expansion factor = \pm error value (%) × 2
- Uncertainty of emission coefficients: The upper and lower limits of uncertainty of the emission coefficients of each raw (fuel) material provided by IPCC.

Project	sources of uncertainty	
	1. Statistical method	
activity data	2. Instrument Calibration Records	
	3. Statutory tolerance	
	4. Recommended by international organizations	
Emission Factor	1. In-house uncertainty value	
Note	2. Uncertainty values disclosed by suppliers, industrial unions, etc.	X
	3. IPCC Announcement Suggested Values	
		0

Source: GHG Protocol guidance on uncertainty assessment in GHG inventories and calculating statistical parameter uncertainty.

5. Documentation and Records

1) Establish an emission inventory

- 1. Basic business information;
- 2. Boundary setting;
- 3. Identification of emission sources;
- 4. Quantification of emissions (including activity data and management of emission coefficients) and summary of plant-wide greenhouse gas emissions
- 5. Data quality management.
- (2) Writing an investigation report
 - 1. Purpose and business introduction
 - 2. Boundary setting
 - 3. Identification of emission sources
 - 4. Quantification of Emissions

4-1. Emission calculation method 4-2. Activity data collection and data source description 4-3. Emission coefficient and its source and selection of related parameters 4-4. Biomass emission description 4-5. Summary of greenhouse gases in the whole plant emissions

5. Data Quality Management

4 ISO14064-1:2018 Inspection work

- 1. Classification and Identification of Emission Sources and Identification of Significance
- 2. Quantification method and reference emission coefficient
- 3. School Case: Case Study of Nanhua University
- 4. Case of agricultural cooperatives: Gukeng Organic

1. ISO14064-1:2018 emission source classification

Significance Assessment Guidelines for Major Indirect Greenhouse Gas Emission Sources

- \checkmark For categories 2 to 6, significance evaluation criteria need to be designed and screened
- \checkmark Not all categories are calculated, high scorers are included

Score	Occurrence frequency (A)	Carbon Reduction Opportunities (B)	Activity Data Sources (C)	Emission factor (D)
3	Happens at least once a week	have control	Accounting/ERP	EPA Bulletin Factor
2	happens at least once a season	Need to cooperate with other units	Estimate	International Emission Factor Simpro
1	Occurs less than three times per year	no chance at all	Unable to get data/ Difficulty obtaining data	unavailable

✓ EPA Environmental Protection Agency, Simpro emission factor collection software

Case Study of Significance Assessment of Major Indirect Greenhouse Gas Emission Sources

categ ory	category	Subcategory	А	В	С	D	total score	significance evaluation
	Energy Direct	1.1 Direct emissions from stationary combustion	_	-	-	_	_	include
	Emission	sources						
	Sources	1.2 Direct emissions from mobile combustion sources	-	-	-	-	-	include
1		1.3 Direct Emissions from Manufacturing Processes	-	-	-	-	-	include
		1.4 Direct Emissions from Fugitive Emission Sources	-	-	-	-	-	include
		1.5 Direct emissions from land use, land-use change and		0	0	0	0	Non-significant (no
		forestry			_			land-related use)
	Energy	2.1 Indirect emissions from imported electricity include						include
2	Indirect	greenhouse gas emissions from the production and		2	3	3	11	
	Sources of	consumption of imported electricity by the organization	3	2	5	5	11	
	Emissions	concerned.						
	Transport	3.1 Emissions from upstream raw material	0	0	0	0	0	Non-significant (no
	indirect	transportation	0	0	0	0	0	raw material)
	sources of	3.2 Emissions from downstream product transportation	0		0	0	0	Non-distinctive (no
	emissions	(calculated up to first-order customers)	0	0	0	0	0	product) 🍡 🍾
		3.3 Emissions from employee commuting						non-significant
3		Includes transport-related emissions from employees'	3	2	1	3	9	
		homes to their workplaces						
	3.4 Emissions from customers and visitors visiting		2	2	1	2	0	non-significant
		transportation	3	2	1	3	9	

Significance Assessment Form for Major Indirect Greenhouse Gas Emission Sources

	Material/ Service	4.1 Greenhouse gas emissions generated by the organization's purchase of commodities (energy)	2	3	3	3	11	Included, energy purchases only
	Indirect	4.2 Greenhouse gas emissions from capital goods	0	0	0	0	0	Non-distinctive (no
	Emissions	4.3 Emissions from disposal of solid and liquid wastes						include
-		depend on the nature of the waste and its treatment. Typical	3	3	3	3	12	
		disposal types are landfill, incineration, biological treatment	5	0	0	0	1 2	
		or recycling processes						
		4.4 Greenhouse gas emissions from capital goods leasing	0	0	0	0	0	non-significant
		4.5 Greenhouse gas emissions from services such as tutoring,			1	1		non-significant
		cleaning, maintenance, postal delivery, banking, etc.			1	1	0	
	Product uses	5.1 Emissions or removals during the product use phase,						Non-distinctive (no
	indirect	including the total expected life-cycle emissions from all	0	0	0	0	0	product)
	emission	relevant products sold						
	sources	5.2 Greenhouse gas emissions from customer leasing.		0	0	Ο	0	Non-distinctive (no
					0	0	U	product, no lease)
,)		5.3 Greenhouse gas emissions from product disposal	0	0	0	0	0	Non-significant (no V
			0		0	0	0	product, no waste)
		5.4 Greenhouse gas emissions from equity debt, investment						Non-significant (no
		debt, plan funds and other investments				0		equity debt, investment
			0	0	0	0	0	debt, program funds
								, p - 0

2. Quantification method (category 1)

1. Stationary emission sources (category 1)

(1) Emergency generators, boiler diesel

Greenhouse gas emissions (CO2e) = (activity data * CO2 emission factor * CO2 global warming potential) + (activity data * CH4 emission factor * CH4 global warming potential) + (activity data * N2O emission factor * N2O global warming potential)

2. Mobile emission sources (category 1)

(1) Official car (gasoline)

Greenhouse gas emissions (CO2e) = (activity data*CO2 emission factor*CO2 global warming potential) + (number of activities

According to *CH4 emission coefficient*CH4 global warming potential) + (activity data*N2O emission coefficient*N2O global warming potential)

(2) Equipment (gasoline, diesel)

Greenhouse gas emissions (CO2e) = (activity data*CO2 emission factor*CO2 global warming potential) + (number of activities

According to *CH4 emission coefficient*CH4 global warming potential) + (activity data*N2O emission coefficient*N2O global warming potential)

Quantification methods (category 1))

3. Fugitive Emission Sources (Category 1)

(1) Refrigerant escape from refrigeration and air-conditioning equipment

Greenhouse gas emissions (CO2e) =

Quantity of specific equipment * original filling volume of specific equipment * emission factor of specific equipment * GWP value

Device name	Common equipment	Emission factor (emission
		rate) (%)
Household freezing and refrigeration equipment	household refrigerator	0.1-0.5
Independent commercial refrigeration and refrigeration equipment	commercial refrigerator	1-15
Medium and large refrigerated and refrigerated equipment	Large freezer and cold room	10-35
Freezing and refrigeration equipment for transportation	Low temperature home delivery	15-50
Industrial freezing and refrigeration equipment, including food processing and refrigeration	Industrial Cryogenic Equipment	7-25
Chiller	Chiller	2-15
Residential and commercial building air conditioners	air conditioner	1-10
mobile air cleaner	car air conditioner	10-30

Quantification methods (category 2)

1. Purchased Electricity (Category 2)

According to the announcement of the Energy Bureau, the carbon emission coefficient of electric power in 2021 = 0.509 kgCO2e/degree)

2. Greenhouse gas emissions (CO2e) = electricity consumption (kWh/year) * power announced by the Energy Bureau

Quantification Methods (category 3)

✓ Definition :

- 1. Employee commuting includes employees traveling from their homes to their workplaces, transport-related emissions
- $2 \ {\rm Emissions} \ {\rm from} \ {\rm business} \ {\rm or} \ {\rm employee} \ {\rm travel} \ {\rm and} \ {\rm transportation}$

Calculation formula

- ✓ Greenhouse gas emissions (CO2e) = transportation distance (km) * number of employees (p) * number of working days (days) * carbon footprint emission coefficient of transportation mode
- ✓ The emission factor can be found in the product carbon footprint database of the Environmental Protection Agency
 - (1) Passenger car for private use (gasoline) (2014): 0.115 kgCO₂e/person-extended kilometer (pkm)
 - (2) Robotic bicycle (gasoline) (2014): 0.0951 kgCO₂e/person-extended kilometer (pkm)
 - (3) Taiwan's railway transport service (Electrical Multiple Units) (2015): 0.054 kgCO₂e/person-km (pkm)
 - (4) High-speed rail transport service (2018): 0.034 kgCO₂e/person-km (pkm)

環保署產品碳足跡資料庫 (EPD Product Carbon Footprint Database) <u>https://cfp-</u> <u>calculate.tw/cfpc/WebPage/LoginPage.aspx</u>

Quantification methods (category 4)

Item 1: Upstream emissions from energy use Indirect greenhouse gas emissions from products used by the organization

✓ Calculation formula

Greenhouse gas emissions (CO2e) =Electricity consumption (kWh/year)*electricity indirect carbon footprint (2019) (kgCO2e/kwh)

- Greenhouse gas emissions (CO2e) =Upstream emissions of purchased diesel (liter/year)*diesel (unburned, 2019) (kgCO2e/liter)
- Greenhouse gas emissions (CO2e) =Upstream emissions of purchased gasoline (liter/year)*motor gasoline (unburned, 2019) (kgCO2e/liter)
- ✓ Emission factors from the EPA's Product Carbon Footprint Database.
- (1) Indirect carbon footprint of electricity (2019): 0.0923 kgCO2e/degree.
- (2) Diesel (unburned, 2019): 0.733 kgCO2e/liter.
- (3) Motor gasoline (unburned, 2019): 0.66 kgCO2e/liter.

Quantification methods (category 4)

Item 2: Waste Disposal - Indirect Greenhouse Gas Emissions from Products Used by the Organization
Calculation formula)

- Greenhouse gas emissions (CO2e) = Waste disposal (incineration) (metric ton/year) * Waste incineration treatment service (Miaoli County Waste Incineration Plant) (kgCO2e/metric ton))
- Greenhouse gas emissions (CO2e) = Waste transportation (tons/year) * incineration plant destination (km) * waste is removed and transported by diesel-powered garbage trucks for general waste (kgCO₂e/tkm (tkm)
- Greenhouse gas emissions (CO2e) = Fertilization of organic waste (metric ton/year)* Fermentation-free conversion of organic waste to fertilizer treatment service (kgCO₂e/metric ton (mt)

✓ EPD Product Carbon Footprint Database

- ✓ If recyclables and waste are transported by the same manufacturer, the waste transport emission coefficient is used.
- (1) Waste incineration treatment service (Miaoli County Waste Incineration Plant): 340 kgCO2e/metric ton)
- (2) Removing and transporting general waste with diesel-powered garbage trucks: 1.31 kgCO₂e/tkm
- (3) Organic waste ferment-free conversion fertilizer treatment service: 48.30 kgCO₂e/metric ton (mt)

IPCC 2006 Suggested Values of Uncertainty Factors for Activity Data)

Source	Thoroughly establis	sh a complete data statistics system	Thoroughly establish a complete data statistics system					
	Measure	Infer	Measure	Infer				
Energy industry	Less than 1%	3-5%	1-2%	5-10%				
Commercial, residential (fuel consumption)	3-5%	5-10%	10-15%	15-25%				
Industrial combustion (energy intensive industry)	3-5%	3-5%	10-15%	5-10%				
Other industries)	3-5%	5-10%	10-15%	15-20%				
Biofuel (lack of source information)	10-30%	20-40%	30-60%	60-100%				

Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories

Uncertain analysis results of greenhouse gas emission data (category 1 and category 2)

	Emissions		Uncertainty analysis								
Emission source	(metric tons	Proportion		Activity data		Integrated					
	CO2e)	(70)	Uncertainty (±%)	Source	Uncertainty(±%)	Source	uncertainty (%)				
Gasoline	15	0.3	<u>+</u> 5.0%	IPCC provides activity data recommendations (other industries have not yet established a sound statistical inference to 5%)	+5.34% -2.60%	Calculated by citing the 95% confidence interval of the IPCC 2006 emission coefficient	+7.31% -5.63%				
Diesel fuel	49	1.1	±5.0%	IPCC provides activity data recommendations (other industries have not yet established a sound statistical inference to 5%)+0.94% -2.02%Ca		Calculated by citing the 95% confidence interval of the IPCC 2006 emission coefficient	+5.09% -5.39%				
Car gasoline	10	0.2	±5.0%	IPCC provides activity data recommendations (other industries have not yet established a sound statistical inference to 5%)	+5.34% -2.60%	Calculated by citing the 95% confidence interval of the IPCC 2006 emission coefficient	+7.31% -5.63%				
Car diesel	69	1.5	±5.0%	IPCC provides activity data recommendations (other industries have not yet established a sound statistical inference to 5%)	+0.94% -2.02%	Calculated by citing the 95% confidence interval of the IPCC 2006 emission coefficient	+5.09% -5.39%				
Solvents, sprays, and refrigerants	273	6	±15.0%	IPCC provides activity data recommendations (other industries have not yet established a sound statistical inference to 15%)	±7.0%	The uncertainty factor of the IPCC emission coefficient is set at ±7.0%	±16.55%				
Outsourcing electricity	4,107	90.8	±1.0%	Meter grade A (error $\pm 0.5\% * 2$ (safety factor) = $\pm 1.0\%$	±7.0%	The uncertainty factor of the IPCC emission coefficient is set at ± 7.0	±7.07%				
Uncertainty analysis Emissions (metric tons CO2e)	4,522.49	100.0		Total Uncertaint	y (%)		±6.50%				

3. School Case: Case Study of Nanhua University

Basic Information (1)

• Fill in the company profile and basic information

School name	南華大學
Headmaster	林聰明
Total number of the staff and students	6,106 人
School address	嘉義縣大林鎮南華路一段 55 號
Greenhouse Gas Manager	洪耀明
Contact number	05-2721001#5342
Email	hongyaoming@gmail.com

Basic Information (2)

• Company organization chart, greenhouse inventory promotion organization chart

Defining the Boundary (1)

- The organizational boundary adopts the definition of operation control in ISO14064-1:2018. The scope of the inspection boundary is: administrative building (Sungkyunkwan), teaching building (Xuehui Building, Xuehaitang, Zhongdao Building, Miaoyin Building), library (Wu Wu Zang), Zhengxing Center, faculty dormitory (Yunshuiju), student dormitory (Wenhui Building, Lize Building, Yuanqi Building, Seven Villages, Nine Villages, Nanhua Pavilion).
- Among them, Xingxue Memorial Hall and Xueshe are the Board of Directors of Fo Guang Shan and are not affiliated with Nanhua University. The cabin has been demolished. Student restaurants (Yunshuiju, Wenhui Building), subcontractors (Xuehui Building 7-11, Yuanqi Building 7-11) part of the electricity bills are paid by the student cafeteria and subcontractors, and the rest of the buildings belong to the school's organizational boundaries.

① 校門 (Main Entrance) 曾衛室 (Campus Security) (m) 公車亭 (Bus Stop)

教學大樓 (Academic Building) 🕕 學慧樓 (Xue Hui Lou) 💿 學海堂 (Xue Hai Tang) ② 中道樓 (Zhong Dao Lou) 行政大樓 (Administrative Building) ⑥ 成均館 (Cheng Jun Guan) 圖書館 (Library)

💿 無盡藏圖書館 (Wu Jin Zang)

宿舍 (Campus Housing) ① 小木屋 (Staff Residence) 📵 雲水居 (Yun Shui Staff Residence) 🔞 文會樓 (Wen Hui Dormitory) ① 麗澤樓 (Li Ze Dormitory) 🕥 緣起樓 (Yuan Qi Dormitory) 🕥 九村 (Jiu Cun Dormitory) ① 七村 (Qi Cun Dormitory)

學生活動(Sports and Extracurricular Activities) ① 操場 (Sports Field) ② 足球場 (Football Field) ⑥ 棒球場 (Baseball Field) ④ 自然農場 (Experimental Farm) 6 綜合球場 (Sports Stadium) 6 興學紀念館 (Fundraising Commemoration Hall) 🔞 網球場 (Tennis Court) 射箭場 (Archery Range) ⑩ 排球場 (Volleyball Court) 南華綠園創 (Innovation Hub) 療癒花園 (Healing Garden) 🔞 設計工坊 (Design Studio) 🚯 桉樹林 (Eucalyptus Forest) 低 九品蓮華大道 (Lotus Walkway) 🔞 橄欖湖 (Olive Lake) 健身房 (Gym and Fitness Center) 🔞 國際會議廳 (International Conference Hall) ⑩ 演藝廳 (Performing Arts Theater) 2 國際會議廳 (International Conference Hall) e學苑 (e-College Learning Center) 函 南華學舍 (Nanhua Vihara)

000000000

Z

Data creation_Category 1

Gasoline equipment : Official vehicles (gasoline), boilers, generators, farm implements (gasoline)

Diesel equipment): official vehicles (diesel), farm implements (gasoline)

Refrigerant equipment) : air conditioner, ice water host, water dispenser, refrigerator, official vehicle refrigerant, heat pump water heater, vending machine

Others : ethanol, methanol, carbon dioxide gas cylinders (for biotechnology experiment), carbon dioxide fire extinguishers

• Collection method :

Oil bills and invoices, manufacturer purchase receipts, and equipment nameplate labels

• Precautions :

Refrigerant equipment requires equipment nameplate labels to record the type of the refrigerant and the original capacity of the refrigerant

Data creation _Category 1

• Stationary combustion:

Boilers, generators, agricultural implements (gasoline)

Mobile combustion

Official vehicles (gasoline), official vehicles (diesel), agricultural implements - trucks (gasoline), agricultural implements - trucks (diesel).

• Dissipation

Air conditioner, ice water host, water dispenser, refrigerator, official car refrigerant, heat pump water heater, vending machine

• Other

Methanol, ethanol, carbon dioxide gas cylinders (for biotechnology experiments), carbon dioxide fire extinguishers)

Data Creation_Category 1

Data creation _Category 2-1

- Item: purchased electricity
- Collection method: Taipower telephone bill
- Note: Actual date 2021/1/1-2021/12/31.

Data creation _ Category 2

- Billing hours are 110/01/05 to 110/02/01.
- The power consumption quota is 1600 degrees.
- The electricity consumption from 110/01/01 to 110/01/04 needs to be supplemented by the previous bill.

622301 嘉義縣大林鎮中坑里南華路一段55號 財團法人南華大學

先生/女士/寶號 G09FP1A G9110020800095

095 覃振號码:E-G911002080009

Create emission source identification table

			範。	专利		可能產生溫室氣體種類 排放源顯別								纲					
廠區/氯程別	活動/設施	排放源	1	2	3	4	CO ₂	CH_4	N ₂ O	HFCs	/物種	PFCs	/物種	SF_6	固定式 燃烧	移動式燃烧	逸散	製程	說明
全校區大樓	用電設施	外購電力		Y			¥	Y	V										
校外宿舍	用電設施	外購電力		Y		A	Y	Y	Y						<u></u>	<u></u>	<u>,</u>		
校區廠商	用電設施	外購電力		Y	_	2.5	Y	Y	V			3							
全校區大樓	發電機	柴油	V				Y	Y	V	2					Y		Į		1
各宿舍	鍋爐	柴油	V				¥	¥	V						Y				
全校區大樓	公務車	汽油	V	20 - 0		8 B	Y	¥	Y							Y	1	2. d	
全校區大樓	公務車	柴油	V				V	¥	Y				3			Y	1		
全校區大樓	農用機具	汽油	V			1	V	¥	Y							Y			
全校區大樓	農用機具	柴油	V				Y	Y	V							Y			l.
全校區大樓	公務車	冷媒R134a	V							Y	R134a				Į		¥		
全校區大樓	冷水主機	冷媒R-22	V	2. 9						Y	R22	. 3					¥		
全校區大樓	冷水主機	冷媒R134a	V	8 0						Y	R134a						V		
宿舍	冷氣機	冷媒R-22	V							¥	R22						V		
全校區大樓	冷氣機	冷媒R-32	V	- 0 - 0 -		8 B			3	Y	R32						V	2. č	
全校區大樓	冷氣機	冷媒R-410a	V				3			Y	R410a	3	3				V		
宿舍	飲水機	冷媒R-22	V							V	R134a				Ĩ.	Ţ.	V		
全校區大樓	飲水機	冷媒R134a	V							¥	R22						V		
全校區大樓	自動販賣機	冷媒R134a	¥							Y	R134a					J	V		
學海堂-生技系	冰箱	冷媒R134a	V	2 9			-			Y	R134a	. 3	-				V		
學海堂-生技系	冰箱	冷媒R143a	Y							V	R143a						V		
學海堂-生技系	冰箱	冷媒R508a	Y							¥	R508a						V		
學海堂-生技系	實驗用	甲醇	V	20 - 0		1	Y									1	V	2. d	
學海堂-生技系	實驗用	乙醇	Y				V						1				V		
全校區大樓	氣體鋼瓶	二氧化碳	V	1		1	V								1		V		
全校區大樓	二氧化碳滅火器	二氧化碳	V				Y										Y		
宿舍	宿舍冰箱	冷媒R134a	V			· · ·				Y	R134a				1		Y		
宿舍	熱泵熱水器	冷媒R134a	V	2 B		2 3				V	R134a						V		
宿舍	熱泵熱水器	冷媒R417a	V							Y	R417a						V		

Establishment of emission source activity data management table

验证/契约别	活動設施	排放源	負責單位	來源說明	ALL BURGLINES				
					年用最	單位。	數據來激	資料存放單位	數據品質
全校區大樓	用電設施	外蹟電力	營繕組	台電網站	7,016,800	度	電號查詢	營續組	電號查訪
校外宿舍	用電設施	外購電力	發譜組	台電網站	1,365,729	腟	電號查詢	發譜組	電號查詢
校區廠商	用電設施	外猜電力	庫務組	廠商收拢	254,022	度	收費清單	庫務組	抄寫電表
全校區大樓	發電機	柴油	營繕组	推估	2,326.25	公升	代内尔登地位在LA	發譜組	推估
校外宿舍	發電機	柴油	營繕组	推估	331.25	公升	化内尔弹电应用口	發譜組	推估
校内宿舍	劉靖	柴油	餐構組	推估	3,025.00	公升	校内编述推估表	發譜組	推估
校外宿舍	能通	柴油	發繡組	加油站	13000.24	公升	校外鍋爐油單	會計室	油單發票
全校區大樓	公務率	汽油	事務組	加油站	4497.6	公升	油單發藥	會計室	油單發票
全校區大樓	公務車	柴油	庫務組	加油站	24841,86	公升	海單發藥	會計室	油單發票
全校區大樓	農用機具	汽油	現安组	加油站	6,637.84	公升	油單發票	會計室	油單發票
全校區大樓	農用機具	柴油	環安組	加油站	1061.12	公升	連舉察	會計室	油單發票
全校區大樓	公務車	冷檗R134a	事務組	設備清單	0.429	公斤	逸散量	庫務組	設備清單
全校區大樓	冷水主機	冷媒R134a	營繕组	設備清單	36.72	公斤	逸散量	發譜組	設備清單
全校區大樓	冷水主機	冷媒R-22	發講組	設備清單	115.175	公斤	途散量	優譜組	設備清單
全校區大樓及宿舍	冷氣機	冷媒R-22	發繡組	設備清單	0.1772	公斤	逸散量	發譜組	設備清單
全校區大樓	冷氣機	冷蝶R-32	發譜組	設備清單	0,0077	公斤	逸散量	發譜組	設備清單
宿舍	冷氣機	冷媒R-410a	發繡組	設備清單	0.0912	公斤	逾散量	發譜組	設備清單
全校區大樓	飲水機	冷媒R134a	現安组	設備清單	0.0818	公斤	逸散量	現安組	設備清單
宿舍	飲水機	冷媒R-22	現安祖	設備清單	0.0144	公斤	逸散畳	環安組	設備清單
全校區大樓	自動販賣機	冷媒R134a	事務組	設備清單	0.0108	公斤	途散量	事務組	設備清單
全校區大樓及宿舍	冰箱	冷媒R134a	發譜組	設備清單	0.0323	公斤	逸散量	營繕組	設備清單
學海堂	冰箱	冷媒R143a	生技系	設備清單	0.0067	公斤	途散量	生技系	設備清單
學海堂	冰箱	冷媒R50%a	生技系	設備清單	0.0006	公斤	途散量	生技系	設備清單
學海堂	實驗用	甲醇	生技系	友和貿易 股份有限	4	公升	收據	生技系	收拢
學海堂	實驗用	乙醇	生技系	日順儀器 有限公司		公升	收據	生技系	收拢
學海堂	實驗問	乙醇	生技系	弘力化工 原料儀器 有限公司	280	公开	收據	生技系	收拢
學海堂	實驗用	二氧化碳	生技系	冷研科技 有限公司	60	公升	收據	生技系	收拢
全校區大樓	二氧化碳减火器	二氧化碳	營繕组	設備清單	62.5	公斤	設備清單	發譜組	設備清單
宿舍	宿舍冰箱	冷媒R134a	營摺組	設備清單	0.0323	公斤	逸散量	發譜組	設備清單
宿舍	熱泵熱水器	冷媒R134a	發繡組	設備清單	0.2295	公斤	途散量	餐禮組	設備清單
also de	動変動と思	1.A. 248 man 1971	85.59820	4-17. (MAL 1-10. 1787	4.50	det i	5.0. HC. (III)	EK 548313	and the startes
Greenhouse Gas Quantification _ Category 1&2)

Based on the completed form, the activity data is used to quantify the total greenhouse gas emissions in 2021, produce a greenhouse gas report.

Quantitative reference calculation.

Greenhouse gas emissions (CO2e)= activity data x emission factor x global warming potential

Activity data	Emission factor	Global warming potential (GWP)
Electricity: kWh) (Gasoline: liter, metric) (Diesel: liter, metric) (Carbon dioxide cylinder: kg) (Refrigerant :kg)	The emission coefficient of electricity coefficient adopts the coefficient announced by Taipower and the Bureau of Energy. The rest of the emission coefficients mostly use the data from the IPCC assessment report	 二氧化碳(CO2):1 (Carbon dioxide (CO2):1) 甲烷(CH4):25 (Methane (CH4):25) 氧化亞氮(N2O):298 (Nitrous oxide (N2O):298) 氫氟碳化物 (HFCS):12~12000 (Hydrofluorocarbons (HFCS):12~12000) 全氟碳化物 (PFCS):5700~11900 (Perfluorocarbons (PFCS):5700~11900) 六氟化硫(SF6):22200 (Sulfur boxafluorida (SF6):22200)

Types of Greenhouse Gas Emission Sources and Calculation Method

Stationary emission sources: Refers to fuel combustion of stationary equipment, including boilers (diesel) and purchased electricity.

 1.) Emergency generators, boiler diesel Greenhouse gas emissions (CO2e) = (activity data* CO2 emission coefficient* CO2 global arming potential)
 + (activity data port CH4 emission coefficient* CH4 global warming potential) + (activity data* N20 emission coefficient* N2O global warming potential)

2.) Purchased electricity

Greenhouse gas emissions (CO₂) = electricity consumption (kWh/year) * electricity announced by the Energy Bureau * CO₂ emission factor

3.) Carbon dioxide

Greenhouse gas emissions (CO2) = activity data * CO2 emission factor * CO2 global warming potential

Mobile emission sources: refer to fuel combustion of transportation equipment, official vehicles (gasoline), agricultural machinery (gasoline, diesel)

1.) Official car (gasoline)
 Greenhouse gas emissions (CO2e) = (activity data * CO2 emission factor * CO2 global warming potential)
 + (activity data * CH4 emission coefficient * CH4 global warming potential) + (activity data * N2O emission
 coefficient * N2O global warming potential)

2.) Agricultural machinery (gasoline, diesel)

Greenhouse gas emissions (CO2e) = (activity data * CO2 emission coefficient * CO2 global current potential) + (activity data * CH4 emission coefficient * CH4 global warming potential) + (activity data * N2O emission coefficient * N2O global warming potential)

Diffuse emission sources: Refrigeration and air conditioning equipment

1. Refrigerant escape of refrigeration and air conditioning equipment

Greenhouse gas emissions (CO2e)=number of specific equipment *original filling volume of specific equipment*emission rate of specific equipment* GWP

設

	Device name	common equipment	Dissipation rate (%)
	Household freezing and refrigeration e	equipment household refriger	rator 0.3
	Independent commercial freezing and refrigerat	ing equipment Commercial refriger	ator 8
Mediur	n and large freezing and refrigerating equipment	Large freezer and cold room	22.5
	Cross over with freezing and refrigerating equi	Commercial refrige	rator 32.5
ndustrial freezing an cold storage	refrigeration equipment, including food processing an	Industrial cryogenic equipment	16
	chiller	chiller	8.5
	Residential and commercial building air conditioners	Air conditioner	5.5
	mobile air cleaner	Single use air condition	ner 15

Coefficient management

Gasoline and diesel use IPCC2006 coefficient

Taipower announced that the carbon emission coefficient of electric power in 2021= 0.509 kg CO2e/degree

			CO排放係數		
排放源		數值		NAMES OF TAXABLE	資料来
	預設值	自訂值	計算使用值	単位	預設值
煙冻	2.534856		2.534856	公噸CO2/公噸	
亞煙煤	2.373874		2.373874	公噸CO2/公噸	
無煙煤	2.922093		2.922093	公噸CO2/公噸]
褐麻•	1.201787	E	1.201787	公噸CO2/公噸]
其他類媒			0.000000	公噸CO2/公噸	
燃料油	3.110960		3,110960	公噸CO2/公乗	
天然氯(NG)	2.090427		2.090427	公喇CO2/千立方公尺	1. 排放係數=IPCC原始係數×
液化天然氯(LNG)	2.661046		2.661046	公噸CO2/千立方公尺	燃料熱值×碳氧化率
液化石油氯(LPG)	3.186738		3.186738	公噸CO2/公噸	2 做料熟益水油包体加层公生
汽油	2.263133		2.263133	公噸002/公乗	· ANTITIC INCIDENTIAL AND AN UNIT AN EX
煤油	2.558763		2.558763	公噸CO2/公乗	3. *該類燃料無我國熱值時,採
鉄油	2,606032		2,606032	公噸CO2/公乗	用IPCC 2006年出版資料。
航空燃油	2.394850		2.394850	公喃CO2/公乗	4 100今後新日子同位期日八年
焦炭	3.135913		3,135913	公噸CO2/公噸	4. LPG之係數另來以驅激同公告 值 1公斤=1 818公升
原氣	0.780754	×	0.780754	公喇CO2/千立方公尺	production and the second
高端氣	0.845817		0.845817	公噸CO2/千立方公尺	5.引用IPCC 2006年版係數
煉油氣	2.170437		2.170437	公噸CO2/千立方公尺	
石油職	2.393761		2.393761	公喻CO2/公乘	
石油焦	3.347347	-	3.347347	公喻CO2/公响	
焓烴類	1.718598		1.718598	公職CO2/公乗	
芳香烨娟	2.700653		2.700653	公喻CO2/公乘	
其他石油產品	2.762032		2.762032	公噸CO2/公乗	
台電電力	0.623000	0.509000	0.509000	公喻CO2/千度	能源局公告98年度電力排放係數
廢棄物焚化	0.999450	1	0.999450	公噸CO2/乾公噸	WBCSD/WRI-Greenhouse Gas
廃棄物→掩埋					
廢水					
車用汽油	2.263133		2.263133	公職CO2/公乗	IPCC 2006年版係數
直用物油	2.606032	P	2.606032	公師台山小雪	IPCC 2006年版係數

GWP coefficient management

Refrigerant adopts AR6 GWP value

432					
溫室氣體化學式	AR2 (1995)	AR3 (2001)	AR4 (2007)	AR5 (2014)	AR6 (2021)
CO2二氧化碳	1	1	1	1	1
CH4甲烷	21	23	25	28	27.9
N ₂ O 氧化亞氮	310	296	298	265	273
Hydrofluorocarbons,HFCs					
HFC-23/R-23 三氟甲烷, CHF ₃	11,700	12,000	14,800	12,400	1 <mark>4,6</mark> 00
HFC-32/R-32 二氟甲烷, CH ₂ F ₂	650	550	675	677	771
HFC-41 一氟甲烷, CH3F	150	97	92	116	135
HFC-125/R-125,1,1,1,2,2- 五氟乙烷,C ₂ HF ₅	2,800	3,400	3,500	3,170	3,7 <mark>4</mark> 0
HFC-134,1,1,2,2-四氟乙 烷,C ₂ H ₂ F ₄	1,000	1,100	1,100	1,120	1,260
HFC-134a/R-134a、1,1,1,2- 四氟乙烷、C ₂ H ₂ F ₄	1,300	1,300	1,430	1,300	1,530
HFC-143,1,1,2-三氟乙 烷,CHF ₂ CH ₂ F	300	330	353	328	364
HFC-143a/R-143a,1,1,1- 三氟乙烷,C ₂ H ₃ F ₃	3,800	4,300	4,470	4,800	5,810
HFC-152,1,2-二氟乙烷, CH ₂ FCH ₂ F	-	43	53	16	22

In 2021, IPCC releases Sixth assessment Report (AR6)

• Stationary Combustion Unit: Public

4-1-1 Stationary combustion emission sources: including boilers, heaters, combustion furnaces, kilns, ovens, dryers, and other equipment prepared.

	(#	m.a.	溫室氣體排放量					
能源類別	医	用里	CO ₂	CH₄	N_2O	總溫室氣體		
數量		單位	(公噸/年)	(公噸/年)	(公噸/年)	(公噸COje/年)		
煙煤		公噸/年	0.00	0.00	0.00	0.00		
亞煙煤		公噸库	0.00	0.00	0.00	0.00		
無煙煤		公噸作	0.00	0.00	0.00	0.00		
褐煤		公噸/年	0.00	0.00	0.00	0.00		
其他類煤		公噸/年	0.00	0.00	0.00	0.00		
燃料油	1	公秉/年	0.00	0.00	0.00	0.00		
天然氣(NG)		千立方公尺/年	0.00	0.00	0.00	0.00		
液化天然氣(LNG)		千立方公尺/年	0.00	0.00	0.00	0.00		
液化石油氣(LPG)		公噸/年	0.00	0.00	0.00	0.00		
汽油	6.64	公秉库	15.02	0.00	0.00	15.08		
煤油		公秉作	0.00	0.00	0.00	0.00		
柴油	18.68	公秉/年	48.69	0.00	0.00	48.85		
航空燃油		公秉/年	0.00	0.00	0.00	0.00		
焦炭		公噸作	0.00	0.00	0.00	0.00		
煤氣		千立方公尺/年	0.00	0.00	0.00	0.00		
高爐氣		千立方公尺/年	0.00	0.00	0.00	0.00		
煉油氣		千立方公尺/年	0.00	0.00	0.00	0.00		
石油腦	1	公秉库	0.00	0.00	0.00	0.00		
石油焦		公噸作	0.00	0.00	0.00	0.00		
烯烴類		公秉/年	0.00	0.00	0.00	0.00		
芳香烴類		公秉/年	0.00	0.00	0.00	0.00		
其他石油產品		公秉/年	0.00	0.00	0.00	0.00		
乙炔	1	公噸/年	0.00	0.00	0.00	0.00		
乙烯		公噸/年	0.00	0.00	0.00	0.00		
固定	:古颜傅排放	新排放總合:	63.71	0.00	0.00	63.93		

Mobile Combustion Unit: Gongbing

4-1-2 Mobile combustion emission sources: Transportation vehicles owned or controlled by your factory (such as official vehicles, transportation fleets, forklifts, etc.)

_						Greenhouse	e Gas Emissio	ons
	Energy category	USac	je amour	<u>π</u>	CO ₂	CH₄	N ₂ 0	總溫室氣體
	motor ascolino	quantity	unit		(公噸/年)	(公噸/年)	(公噸/年)	(公噸CO_e/年)
		4.51	kiloliter/	'year	10.21	0.00	0.00	10.58
	Diesel for vehicles	25.90	kiloliter/\	/ear	67.50	0.00	0.00	68.57
Total emissions from mobile combustion sources				77.71	0.01	0.00	79.15	

- Refrigerant Emission Calculation
- R22 needs to be identified and not included in the calculation

1	冷氣		七村	九村	南華館	SUM	冷媒原始擴充量(kg)	排放因子(%)	
2	R22		102	1		103	1.21	5.5	6.8547
3	R22		5	145	323	473	1.3	5.5	33.8195
8									
9	冰水主機								
10	R134a	2				2	216	8.5	36.7200
11	R22	5				5	271	8.5	115.1750
12									
13	飲水機								
14	(賀眾)R134a	20	1	4		25	0.146	0.3	0.0110
15	(龍泉)R134a	78				78	0.3	0.3	0.0702
16	(大同)R134a	1				1	0.2	0.3	0.0006
17	R22		3	3	10	16	0.3	0.3	0.0144

• Dissipation amount of refrigerant type Unit: metric ton

5-4. 溶劑、噴霧劑與冷媒排放源

溶劑、噴霧劑與冷媒等氟氯碳化物的逸散計算填表說明:

 工廠在清洗製程中會因使用溶劑而造成逸散,或者使用的空調與冷凍設備因冷媒外洩而須補充,以及滅火器或噴霧器的使用 都會造成二氧化碳或含氟化合物氣體的逸散。

2. 若統計二氧化碳或含氟化合物逸散量有困難,亦可統計該物種之採購量或委外補充量。

使用物種	逸散 / 補充量 (公噸/年)	全球暖化潛勢 (GWP)	温室氣體排放量 (公噸○◯→e/年)
範例:SF。	10	22,200	222,000.0000
二氧化碳滅火器	0.12		0.1225
氢氟碳化物HFC			
三氟甲烷HFC-23/R-23,CHF3		14,800	0.0000
二氟甲烷HFC-32/R-32,CH ₂ F ₂		675	0.0000
一氟甲烷HFC-41,CH ₃ F		<u></u>	0.0000
1,1,1,2,2-五氟乙烷HFC-125/R-125,C2HF5		3,500	0.0000
1,1,2,2-四氟乙烷HFC-134,C ₂ H ₂ F ₄			0.0000
1,1,1,2-四氟乙烷HFC-134a/R-134a,C2H2F4	0.0386	1,530	59,0555
1,1,2-三氟乙烷HFC-143,CHF2CH2F		<u> </u>	0.0000
1,1,1-三氟乙烷HFC-143a/R-143a,C2H3F3	0.0000	5,810	0.0387
1,2-二氟乙烷HFC-152, CH ₂ FCH ₂ F			0.0000
1,1-二氟乙烷HFC-152a/R-152a,C3H4F2		124	0.0000
→氟乙烷HFC-161,CH ₃ CH ₃ F			0.0000
1,1,1,2,3,3,3-七氟丙烷HFC-227ca,CF_CHFCF。		3,220	0.0000
1,1,1,2,2,3-六氟丙烷HFC-236cb,CH_FCF_CF			0.0000
1,1,1,2,3,3-六氟丙烷HFC-236ea,CHF ₂ CHFCF3			0.0000
111000 小田井戸10001000. クロロ		0.010 W	

• Electricity consumption unit: 1,000 kWh

	4.2 Energy ~Electricity & Steam according to the check year.												
			Usage (outside	Emiss	sion Factor (metric	Power		Greenho	ouse gas em	issions		
	Electricit	y Usage	sales) (thousand	ton/k	ton/kWh)		ton/kWh)		purchased	CO ₂	CH_4	N_2O	總溫室氣體
		Taipowor	degrees/year)	CO ₂	CH4	N ₂ O	Source	(公噸/年)	(公噸/年)	(公噸/年)	(公噸COje/年)		
Purcha	sed electricity		8128.507	0.509 0		0	Taipower	4137.41	0.00	0.00	4137.41		
i urcitu	sea creetherty	plant				1		0.00	0.00	0.00	0.00		
1	Self-generated	electricity for sale	e (No.1 Unit)		4			0.00	0.00	0.00	0.00		
	Self-generated electricity for sale (No.12Unit)		e (No.12Unit)					0.00	0.00	0.00	0.00		
	Total en			issions from purchased electricity use (Scope 2):			4137.41	0.00	0.00	4137.41			
				Total e	emissions from	electricity so	ld outside:	0.00	0.00	0.00	0.00		

Greenhouse Gas Emissions (Category 1&2)

• The emission inventory can obtain the Category 1&2 greenhouse gas emissions of the year.

Emission proportion of each category	Category 1	Category 2
Greenhouse gas emissions (metric tons CO2e/ year)	419.12	4137.41
Proportion of total emissions (%)	9.20	90.80

Data Creation (Category 4)

• Project:

Emissions from Purchased Products (Energy): Purchased Electricity, Purchased Diesel, Purchased Gasoline

Emissions from handling solid and liquid waste: general waste (transportation), general waste (incineration), recyclables transportation (transportation), organic waste (fertilization), medical waste (transportation), medical waste (incineration), laboratory waste (transportation), laboratory waste (incineration)

• Measurement method:

Google map shortest time distance.

• Precautions:

It is recommended to take a screenshot after the measurement. There will be errors in the distance measured by Google map at different time points.

Waste discharge is divided into waste transportation and waste treatment.

Organic waste (transportation) is not included in the calculation due to self-fertilization at Nanhua University

Coefficients and formulas for purchased goods (energy) (Category 4)

• Buy goods

Electricity indirect carbon footprint (2019): 0.0923 kgCO2e/degree.

Diesel (unburned, 2019): 0.733 kgCO2e/liter.

Motor gasoline (unburned, 2019): 0.66 kgCO2e/liter.

Greenhouse gas emissions (CO2e) = kWh of electricity consumption (kWh/year) * indirect carbon footprint of electricity (2019) (kgCO2e/kWh)

Greenhouse gas emissions (CO2e) = upstream emissions of purchased diesel (liter/year)*diesel (unburned, 2019) (kgCO2e/liter) Greenhouse gas emissions (CO2e) = upstream emissions of purchased gasoline (liter/year) * motor gasoline (unburned, 2019) (kgCO2e/liter)

Calculation of purchasing commodity (energy) activity data (Category 4)

• The greenhouse gas emission of purchased goods (energy) is 742.09 metric tons CO2e/year.

Upstream emissions from purchased electricity (degrees/year)	Indirect carbon footprint of electricity (2019) (kgCO2/degree)	carbon emissions (kgCO2e/year)	carbon emissions (metric tons CO2e/year)
7,603,609	0.0923	701813.1107	701.8131107
Upstream emissions of purchased diesel oil (liter/year)	Diesel (unburned, 2019) (kgCO2e/liter)	carbon emissions (kgCO2e/year)	carbon emissions (metric tons CO2e/year)
44585.72	0.733	32681.33276	32.68133276
Upstream emissions of purchased gasoline (liter/year)	Motor gasoline (Unburned, 2019) (kgCO2e/liter)	carbon emissions (kgCO2e/year)	carbon emissions (metric tons CO2e/year)
11,510.20	0.66	7596.732	7.596732
			742.0911755

Waste factors and formulas (Category 4)

• Waste

Waste incineration treatment service (Miaoli County Waste Incineration Plant): 340 kgCO2e/metric ton

Removal and transportation of general waste with diesel-powered garbage trucks: 1.31 kgCO₂e/tkm

Organic waste ferment-free conversion fertilizer treatment service: 48.30 kgCO₂e/metric ton (mt) Greenhouse gas emissions (CO2e) = waste disposal (incineration) (metric ton/year) * waste incineration treatment service (Miaoli County Waste Incineration Plant) (kgCO2e/metric ton)

Greenhouse gas emissions (CO2e) = waste transportation (tonnes/year) * incineration plant destination (km) * waste is removed and transported by diesel-powered garbage trucks for general waste (kgCO₂e/tkm (tkm))

Greenhouse gas emissions (CO2e) = Fertilization of organic waste (metric ton/year) * Fertilizer treatment service of organic waste without fermentation (kgCO₂e/metric ton (mt))

- General waste (incineration) Incineration amount
- General waste (transportation) Transportation volume, distance to incineration plant

General waste (incineration)				Carbon omissions	Carbon omissions (matric
Waste disposal (incineration)		Waste incineration treatment service (Miaoli County Waste		(kgCO2e/year)	tons kgCO2e/year)
(methe tons/year)	141.446	incineration Plant) (kgCO2e/metric ton)	340	48091.64	48.09164
General waste (transportation)				Carbon omissions	Carbon anciesiane (matric
waste transportation (tons/year)		Clean and transport general waste with diesel-powered garbage trucks (kgCO2e/tkm)		(kgCO2e/year)	tons kgCO2e/year)
	141.446		1.31		
35.2 kilometers from the destination	ation to				
the deergrass incineration plant	t (tkm) 978.8992			6522.357952	6.522357952

• Transportation of recyclables (transportation) Recycling volume, distance between four manufacturers

(Transportation)			Carbon emissions	Carbon omissions (motris
Transportation of		Clean and transport general waste with diesel-powered	(kgCO2e/year)	tons kgCO2e/year)
recyclables (ton/year)	59.12	garbage trucks (kgCO2e/tkm)		
Dostination to Dashun (km)				
Destination to Dashun (Kin)	88		681 53536	0.68153536
	0.0			0.00100000
Transportation of recyclables (ton/year)				
	5.3795			
Destination to Lianyi				
	5.5		38.7592975	0.038759298
Transportation of recyclables	s (ton/yea	r)		
	1.36			
Destination to cleaning team Hall(km)	of Dalin 1	own		
	10.4		18.52864	0.01852864
Transportation of recyclables	(ton/year)		
	1.95215			
Destination to Londing (km)				
	1.9		4.85890135	0.004858901

- Organic waste (compost) Amount of compost
- Medical waste (incineration) Incineration amount
- Medical waste (transportation) Transportation volume, distance to incineration plant

Organic waste Fertilization of organic	waste		Organic waste ferment-free conversion fertilizer treatment service (kgCO2e/metric ton (mt))	Carbon emissions (kgCO2e/year)	Carbon emissions (metric tons kgCO2e/year)
23.745			48.30	1146.8835	1.1468835
Medical waste (incinera	ation)				
Waste disposal (inciner	ation)		Waste incineration treatment service (Miaoli County Waste Incineration Plant) (kgCO2e/metric ton)	(kgCO2e/year)	Carbon emissions (metric tons kgCO2e/year)
		0.012	340	4.08	0.00408
Medical waste (transpo	rtation)				
Waste Transportation (tons/year)			Clean and transport general waste with diesel-powered garbage trucks (kgCO2e/tkm)	Carbon emissions (kgCO2e/year)	tons kgCO2e/year)
		0.012	1.31		
28.2 kilometers (tkm) from Environmental Protection	n the dest Technolo	tination to	Riyou		
		0.4548		0.595788	0.000595788

- Laboratory waste (incineration)
- Laboratory waste (transportation)
- Add up to get the Category 4 greenhouse gas emissions of 56.55kgCO2e for the year.

Laboratory waste (incineration				Carbon emissions	Carbon emissions (metric	
Waste disposal (incineration) (tons/year)	Waste incineration treatment servic	e (Miaoli County Waste Incineration		(kgCO2e/year)	tons kgCO2e/year)	
0.09	Plant) (kgCO2e/metric ton)		340	30.6	0.0306	
Laboratory waste (transportation)						
Waste transportation (tons/year)	Clean and transport general waste w (kgCO2e/tkm)	ith diesel-powered garbage trucks		Carbon emissions (kgCO2e/year)	Carbon emissions (metric tons kgCO2e/year)	
0.09			1.31			
84.5 kilometers (tkm) from the destination Environmental Resources Research manage	to National Cheng Kung University ment Center					
7.605				9.96255	0.00996255	
					56.54980199	
1						

Greenhouse Gas Emissions (Category 4)

• The greenhouse gas emission of Category 4 for the year is 798.64 metric tons CO2e/year.

Emission proportion of each category	Category 4
Greenhouse gas emissions (metric tons CO2e/year)	798.64
Proportion of total emissions (%)	-

Taking the Gukeng Organic Cooperative as an Example

Data Creation (Category 1)

• Project:

Diesel equipment: refrigerated truck (diesel)

Refrigerant equipment: refrigerated truck (vehicle refrigerant), refrigerated truck (freezer), freezer, air conditioner, refrigerator

• Collection method:

Oil bills and invoices, equipment brand labels, and declarations from refrigerant manufacturers.

• Precautions:

Refrigerant equipment requires equipment nameplate labels to record the type of refrigerant and the original capacity of the refrigerant.

Data Creation (Category 1)

• Mobile combustion:

Refrigerated truck (diesel).

• Dissipation:

Refrigerated vehicles (refrigerant for vehicles), refrigerated vehicles (freezers), freezers, air conditioners, refrigerators.

Data Creation (Category 1)

 Refrigerant manufacturer statement

車牌:RCF-9368	
冷媒類別:R134A	
冷媒數量:0.50−0.55KG	

車牌:KEL-7773 冷媒類別:R134A 冷媒數量:0.4KG

車牌:BHU-3768 冷媒類別:R134A 冷媒數量:0.50-0.55KG

SDA-3029L +25℃~-20℃ 庫内 -18℃(1900 kcal/h) HFC R404A 7H15AA 7H15AA 質 銅管製造 SDA 160Wx2 質 銅管製造 達 SDA 120Wx2 引) [650 (g)

Data Creation (Category 2)

- Project:
 - purchased electricity
- Collection method:
 - Taipower Telephone Bill
- Precautions:

With the actual date 2021/1/1-2021/12/31.

Data Creation (Category 2)

- Billing hours are 110/12/02 to 111/01/03.
- The electricity consumption quota is 5195-131 (the landlord's electricity consumption quota) = 5064 degrees.
- Calculate the electricity consumption from 110/12/02 to 110/12/31 as 5064/33*30=4603 degrees °

630047 雲縣斗南鎮信義路27巷7號 劉容君 M19WZA0 M0111012748100 單據號碼 · M0111012748100 先生/女士/寶號 推費總金額 Total Amou 111/01/23 ***17058元 19-83-2906-31-7 計費內容 Charge Info 基本電費(約定) 4330.0 元 需量綜合營業用 12727.7 元 流動電費 : 雲縣斗南鎮信義路27巷7號1 繳費總金額 17,058元 代繳帳號 契約容量(瓩 25 經常(尖峰)契約 高需量(瓩) 度數(度)/Energy Consumption(kWh) 當(尖峰) 度數 5195 110/13/02~111/01/03 電費 常(尖峰)度數 8157(-/9)-8626(1/6) =1-31度 1.2864 元 2608 公斤 131 × 3.45=3>1元 古城区は 17058-7>1=16937 天情 EVEREADY 碳链雷池 營業稅已併入各項應稅費用內 木公司登利事業統 台湾電力公司 1110125 1 太總費馮證各百金額數字後由機器印出,如發現 收款章 已由代繳機構完成扣繳 111年01-02月 110年11-12月 發票號碼 VZ-27803658 金額(元) 17058 年期別(5位) 載旦流水碼(10位) 檢核碼(15位)

111年01月 繳費憑證(金融機構代繳用戶)

Jan. 2022 Payment Receipt

Create emission source identification table

			範	辱别	1				可能	產生溫	盟室氣覺	曹種類				排放源类	頁別		
廠區/製程別	活動/設施	排放源	1	2	3	4	CO2	CH4	N ₂ O	HFCs	/ 物種	PFCs	/ 物種	SF ₆	固定式 燃燒	移動式 燃燒	逸散	製程	說明
合作社	用電設施	外購電力(台電)		V			V	V	V										
合作社	冷藏車	柴油	V				V	V	V							V			
合作社	冷藏車	冷媒 R134	V								i.	V	R134				V		
合作社	冷藏庫	冷媒 R22	V									V	R22				V		
合作社	冷藏庫	冷媒 R427a	V									V	R427a				V		
合作社	冷藏庫	冷媒 R507a	V									V	R507a				V		
合作社	一樓冷氣	R410a	V									V	R410a				V		
合作社	二樓冷氣	R22	V									V	R22				V		
合作社	一樓冰箱	R134a	V									V	R134a				V		
合作社	員工通勤	汽機車			V														
合作社	商務出差	高鐵、火車、汽機車			V														

Establishment of emission source activity data management table

कोर कर सीना केंद्र होत	いてまたたれまた	HEAVE YES	A - 中国 (L)	THE NEW YORK			活動數據1		
敞區/裂栓別	活動於这他	排放源	貝頁甲征	米源説明	年用量	單位	數據來源	資料存放單位	數據品質
合作社	用電設施	外購電力	行政部	台電網站	65,283	度	電號查詢	行政部	電號查詢
合作社	冷藏車	柴油	儲運部	油單發票	17531.72	公升	油單發票	行政部	油單發票
合作社	冷藏車	冷媒 R134	行政部	設備清單	500	公克	冷媒總表	行政部	設備名牌
合作社	冷藏車	冷媒 R134	行政部	設備清單	500	公克	冷媒總表	行政部	設備名牌
合作社	冷藏車	冷媒 R134	行政部	設備清單	400	公克	冷媒總表	行政部	設備名牌
合作社	冷凍庫	冷媒 R22	行政部	設備清單	3	公斤	冷媒總表	行政部	設備名牌
合作社	冷凍庫	冷媒 R22	行政部	設備清單	4	公斤	冷媒總表	行政部	設備名牌
合作社	冷凍庫	冷媒 R427a	行政部	設備清單	8	公斤	冷媒總表	行政部	設備名牌
合作社	冷凍庫	冷媒 R507a	行政部	設備清單	3	公斤	冷媒總表	行政部	設備名牌
合作社	冷凍庫	冷媒 R507a	行政部	設備清單	6	公斤	冷媒總表	行政部	設備名牌
合作社	一樓冷氣	R410a	行政部	設備清單	3	公斤	冷媒總表	行政部	設備名牌
合作社	二樓冷氣	R22	行政部	設備清單	3.2	公斤	冷媒總表	行政部	設備名牌
合作社	一樓冰箱	R134a	行政部	設備清單	0.51	公斤	冷媒總表	行政部	設備名牌
合作社	員工通勤	汽車	行政部	Googlemap測量	114	公里	員工通勤總表	行政部	Googlemap測量
合作社	員工通勤	機車	行政部	Googlemap測量	48	公里	員工通勤總表	行政部	Googlemap測量
合作社	商務出差	高鐵	行政部	高鐵網站里程 數	2,467.65	公里	商務出差總表	行政部	高鐵網站里程 數
合作社	商務出差	火車	行政部	台鐵網站試算	135.70	公里	商務出差總表	行政部	台鐵網站試算
合作社	商務出差	汽車	行政部	Googlemap測量	145.60	公里	商務出差總表	行政部	Googlemap測量
合作社	商務出差	機車	行政部	Googleman)即量	39.79	公里	商務出差總表	行政部	Googleman測量

Mobile Combustion Unit: Gongbing

4-1-2 Mobile com emission sour	nbustion rces:	The means c (such a	of transportations of transportations of transportations of the second state of the se	on owned or o les, transport	controlled by fleets, stacker	your factory rs, etc.			
	Usao	Greenhouse gas emissions							
Energy category	U Sug		CO2	CH ₄	N2O	Total GHG			
	Quantity	Unit	(metric tons/year)	(metric tons/year)	(metric tons/year)	(metric tons CO2/year)			
Gasoline for cars		kiloliter/ year	0.00	0.00	0.00	0.00			
Diesel for cars	17.53	kiloliter/ year	45.69	0.00	0.00	46.41			
Total emissions fro	45.69	0.00	0.00	46.41					

 Calculation of refrigerant emission, in this case, there is a rental car that needs to be calculated for the use time

	Refrigerant	Use			capacity (kg)	Emissions factor (%)	Dissipation (kg)	Dissipation (kiloliter)	Dissipation during use (kiloliter)	Types of refrigerant	Sum
Equipment	model/weig	time/month		_	容量Kg	排放因子(%)	逸散量(Kg)	逸散量(公秉)	使用期間逸散量(公秉)	冷媒種類	總和
KEF-0668(車用)		12	reconfirm	再確認	再確認	20					
BHU-3768(車用)	R134/500~550g	12		R134	0.5	20	0.1	0.0001	0.0001	R134	0.00021
RCF-9368(更換BS	S R134/500~550g	12	11 tons/ December	R134	0.5	20	0.1	0.0001	0.0001	R22	0.00160305
8102-R5(車用)		5	replacement (calculate one	再確認	再確認	20				R507a	0.002025
KEN-7560(車用)		?	month)	再確認	再確認	20				R427a	0.0018
KEL-7773(車用)	R134/400g	1	17頓/12月更換(計算一個月) R134	0.4	20	0.08	0.00008	0.00001	R410a	0.000176
KEF-0668(車廂冷	藏設備)	12		再確認	再確認	32.5				R134a	0.0000033
BHU-3768(車廂冷	≈ R404/1650g	12		R404	1.65	32.5	0.53625	0.00053625	0.00053625	R404	0.0010725
RCF-9368(車廂冷	#R404/1650g	12		R404	1.65	32.5	0.53625	0.00053625	0.00053625		
8102-R5(車廂冷蕪	藏設備)	5		再確認	再確認	32.5					
KEN-7560(車廂冷	⇒藏設備)	?		再確認	再確認	32.5					
KEL-7773(車廂冷	藏設備)	1		再確認	再確認	32.5					
A庫	R22/4kg	12		R22	4	22.5	0.9	0.0009	0.0009		
B庫	R507a/3kg	12		R507a	3	22.5	0.675	0.000675	0.000675		
C庫	R507a/6kg	12		R507a	6	22.5	1.35	0.00135	0.00135		
D庫	R427a/8kg	12		R427a	8	22.5	1.8	0.0018	0.0018		
E庫	R22/3kg	12		R22	3	22.5	0.675	0.000675	0.000675		
一樓冷氣	R410a/3.2kg	12		R410a	3.2	5.5	0.176	0.000176	0.000176		
二樓冷氣	R22/0.51kg	12		R22	0.51	5.5	0.02805	0.00002805	0.00002805		
一樓冰箱	R134a/110g	12		R134a	0.11	0.3	0.00033	0.0000033	0.00000033		

1,1,2,2 四氟乙焼HFC-134・CH,F, 0,0000 1,260 0.02646 1,1,1,二氧乙烷HFC-134,K-134, CH,F, 0,0000 1,530 0,0000 1,1,1,二氧乙烷HFC-134,K-134, CH,F, 0,0000				
1,1,1,2-四氟乙焼HFC-134a,R-134a + C,H,F, 0,0000 1,530 0,0005 1,1,1=氟乙焼HFC-143 + C,H2/G,F 0,0000 1,1,1=氟乙烷HFC-133 + C,H2/G,F 5,810 0,0000 1,1=氟乙烷HFC-133 + C,H2/G,F 0,0000 1,1=氟乙烷HFC-152 + C,H2/G,F 124 0,0000	1,1,2,2-四氟乙烷HFC-134,C ₃ H ₂ F ₄	0.0002	1,260	0.2646
1.1.2-三氟乙焼HFC-143.8-143.a、CH-P2 0,0000 1.1.1=氟乙焼HFC-143.8-143.a、CH-P3 5,810 0,0000 1.2-二氟乙烷HFC-143.8-143.a、CH-P5 0,0000 1.1-二氟乙烷HFC-1143.8-152.a、CH-P5 124 0,0000 1.1-二氟乙烷HFC-151.c、CH-PCH-F5 0,0000 1.1.1_23.3.3-七氟丙烷HFC-2276a.c、CH-CHFCF 3,220 0,0000 1.1.1_2,3.3.7-氟丙烷HFC-236a.c、CH-CHFCF 0,0000 1.1.1_2,3.3.7-氟丙烷HFC-236a.c、CH-FCFCFF 0,0000 1.1.1_2,3.3.7-氟丙烷HFC-236a.c、CH-FCFCFF 0,0000 1.1.1_3.3.3-ボ氟丙烷HFC-236a.c、CH-FCFCFF 0,0000 1.1.1_2,3.4.5.5.+ 9,810 0,0000 1.1.1_2,3.4.5.5.+ 9,810 0,0000 1.1.1_3.3-五氟万烷HFC-2456a.c CH-FCFCFF 0,0000 1.1.1_2,3.4.5.5.+ 0,0000 0,0000 1.1.1_2,3.4.5.5.+ 0,0000 0,0000 1.1.1_2,3.4.5.5.+ 1,640 0,0000 1.1.1_3.3-五氟万烷HFC-2456a.c CH-GCFCF 1,640 0,0000 1.1.1_3.3-4 (4,1128) </td <td>1,1,1,2-四氟乙烷HFC-134a/R-134a,C2H2F4</td> <td>0.0000</td> <td>1,530</td> <td>0.0005</td>	1,1,1,2-四氟乙烷HFC-134a/R-134a,C2H2F4	0.0000	1,530	0.0005
1,1,1==氟乙焼HPC-143aR-143a・C,H,F, 5,810 00000 1,2 二氟乙烷HPC-152+CH,FG,FG,FG,FG,FG,FG,FG,FG,FG,FG,FG,FG,FG,	1,1,2-三氟乙烷HFC-143,CHF2CH2F	1949-9-04	_	0.0000
1.2二氟乙烷HFC-152+CH_FCH_F — 00000 1.1二氟乙烷HFC-152a-R-152a+CJH_F, 124 00000	1,1,1-三氟乙烷HFC-143a/R-143a,C ₃ H ₃ F ₃		5,810	0.0000
1.1.二氧乙烷HFC152aR-152a・C,H.F. 124 0.0000 一氧乙烷HFC161・CH,CH,F 0.0000 1.1,1,2,3,3-七氧丙烷HFC2276a・CF,CHFCF, 3,220 0.0000 1.1,1,2,3,3-大氧丙烷HFC2366a・CH,FCF,CF, 0.0000 1.1,1,2,3,3-六氧丙烷HFC2366a・CH,FCF,CF, 0.0000 1.1,1,2,3,3-六氧丙烷HFC2366a・CH,FCF,CF, 0.0000 1.1,1,3,3-式氧丙烷HFC2366a・CH,FCF,CHF, 0.0000 1.1,1,3,3-五氧丙烷HFC2456a・CH,FCF,CHF, 0.0000 1.1,1,3,3-五氧万烷HFC2456a・CH,FCF,CHF, 0.0000 1.1,1,3,3-五氧万烷HFC2456a・CH,FCF,CHF, 0.0000 1.1,1,2,3-45,5-+氧烷烷HFC43-10mee・CF,CHFCHFCF,CF, 1,640 0.0000 1.1,1,2,3,45,5,5-+氧烷烷HFC43-10mee・CF,CHFCHFCF,CF, 1,640 0.0000 R01a・R22152a/124 (53/3/3/4) 1,263 0.00000 R01a・R22152a/124 (61/128) 1,221 0.0000 R407a・R22152a/124 (61/128) 1,221 0.0000 R407a・R221251/34a (20/40/d0) 2,262 0.0000 R407a・R221251/34a (20/40/d0) 2,262 0.0000 R407a・R221251/34a (20/40/d1) 2,264 0.0000 R407a・R221251/34a (20/40/d1) 2,508	1,2-二氟乙烷HFC-152,CH ₂ FCH ₂ F		_	0.0000
一氟乙烷HPC-161、CH,CH,F — 0.0000 1,1,1,2,3,3-七氟丙烷HPC-227ea、CF,CHFCF, 3,220 0.0000 1,1,1,2,3,3-七氟丙烷HPC-227ea、CF,CHFCF, — 0.0000 1,1,1,2,3,3-Ϯ氟丙烷HPC-227ea、CF,CHFCF, — 0.0000 1,1,1,2,3,3-Ϯ氟丙烷HPC-236ea、CH,FC,FCF, — 0.0000 1,1,1,3,3-禾氟丙烷HPC-236ea、CH,FC,CHF, 9,810 0.0000 1,1,2,3-五氟丙烷HPC-245a、CH,FCF,CHF, 1,030 0.0000 1,1,1,3-五氟丙烷HPC-245a、CH,FCF,CHF, 1,030 0.0000 1,1,1,3-五氟万烷HPC-245a、CH,FCF,CHF, 1,030 0.0000 1,1,1,3-五氟万烷HPC-245a、CH,FCF,CHF, 1,030 0.0000 1,1,1,3-五氟万烷HPC-245a、CH,FCF,CHF, 1,030 0.0000 1,1,1,2,2,3,4,5,5,5-+氟戊烷HPC-43-10mee、CF,CHPCHPCF,CF, 1,640 0.0000 1,1,1,2,2,3,4,5,5,5-+氟戊烷HPC-43-10mee、CF,CHPCHPCF,CF, 1,640 0.0000 R401a、R22152/22/24 (53/13/34) 1,221 0.0000 R401a、R22152/24 (53/13/34) 1,221 0.0000 R401a · R221/25/13/a (10/70/20) 2,804 0.0000 R407a · R32125/13/a (10/70/20) 2,804 0.0000 R407a · R32125/13/a (10/70/20)	1,1-二氟乙烷HFC-152a/R-152a,C ₂ H ₄ F ₂		124	0.0000
1,1,1,2,3,3,-七氟丙焼HPC-227&, CF,CHPCF, 3,220 0,0000 1,1,1,2,3,-六氟丙焼HPC-236a, CH,PCF,CF, 0,0000 1,1,1,3,3,-六氟丙焼HPC-236a, CH,PCF,CF, 0,0000 1,1,1,3,3,-六氟丙焼HPC-236a, CH,PCF,CH,F, 9,810 0,0000 1,1,1,3,3,-六氟丙焼HPC-236a, CH,PC,CH,F, 0,0000 1,1,1,3,3,-式氟丙焼HPC-236a, CH,PC,CH,F, 0,0000 1,1,1,3,3,-式氟丙焼HPC-245a, CH,PC,CH,F, 0,0000 1,1,1,3,3,-式氟丙焼HPC-245a, CH,PC,CH,F, 0,0000 1,1,1,3,3,-式氟丙焼HPC-245a, CH,PC,CH,F, 0,0000 1,1,1,3,3,-式氟丙烷HPC-245a, CH,PC,PC,H, 794 0,0000 1,1,1,3,3,-式氟丙烷HPC-245a, CH,PC,PC,H, 794 0,0000 1,1,1,2,3,4,5,5,5,+ 0,640 0,0000 1,1,1,2,3,4,5,5,5,+ 1,640 0,0000 1,1,1,2,3,4,5,5,5,+ 1,640 0,0000 R401a, R22,152,4,41 (61,11,28) 1,263 0,0000 0,0000 R404 , R125,143,41 (20,4040) 2,262 0,0000 2,262 0,0000 R407a, R32,125,134a (12,07,020) 2,508 0,0000 2,2508 0,00000 R407a,	一氟乙烷HFC-161,CH ₃ CH ₃ F			0.0000
1,1,1,2,2,3-六氟两焼HFC-2366x・CH_FCF_CF_ 0.0000 1,1,1,2,3,3-六氟丙焼HFC-2366x・CHF_CHFCF 0.0000 1,1,2,3,3-六氟丙烷HFC-2366x・CHF_CHFCF 0.0000 1,1,2,3,3-六氟丙烷HFC-2366x・CHF_CF_CHF 0.0000 1,1,2,3,3-五氟丙烷HFC-2366x・CHF2CH2CF3 1,030 0.0000 1,1,1,3,3-五氟可烷HFC-2456x・CHF2CH2CF3 1,030 0.0000 1,1,1,3,3-五氟可烷HFC-2456x・CF/CH/CCF_CH5 1,640 0.0000 1,1,1,3,3-五氟丁烷HFC-365mfc・CF/CH/CF_CH5 1,640 0.0000 1,1,1,2,3,4,5,5,5-4氟C,烷HFCH3 794 0.0000 1,1,1,2,3,4,5,5,5-4氟C,烷HFCH5 1,640 0.0000 1,1,1,2,3,4,5,5,5-4氟C,烷HFCH3 794 0.0000 1,1,1,2,3,4,5,5,5-4氟C,烷HFCH3 794 0.0000 1,1,1,2,3,4,5,5,5-4氟C,烷HFCH3 794 0.0000 R401a・R22152aA124 (53/13/34) 1,263 0.0000 R401a・R22152aA124 (53/13/34) 1,263 0.0000 R407a・R32125123aA124 (61/11/28) 1,221 0.0000 R407a・R32125134a (10/70/20) 2,804 0.0000 R407a・R32125134a (23/25/52) 2,508 0.00000 R407a・R32125143a(250/50) 0.00005	1,1,1,2,3,3,3-七氟丙烷HFC-227ea,CF_CHFCF」		3,220	0.0000
1,1,1,2,3,3-六氟两焼HFC-236ea · CHF_CHFCF; 0,0000 1,1,1,3,3-六氟丙焼HFC-236fa · CH_FC 9,810 0,0000 1,1,2,3,3-六氟丙焼HFC-236fa · CH_FCF_CHF; 0,0000 1,1,1,3,3-五氟丙焼HFC-236fa · CH_FCF_CHF; 0,0000 1,1,1,3,3-五氟丙焼HFC-245fa · CHF2CH2CF3 1,030 0,0000 1,1,1,3,3-五氟万焼HFC-245fa · CHFCHCF; 794 0,0000 1,1,1,2,2,3,4,5,5-+氟,戊焼HFC-43-10mee · CF;CHFCH; 794 0,0000 1,1,1,2,2,3,4,5,5-+氟,戊焼HFC-43-10mee · CF;CHFCH; 1,640 0,0000 1,1,1,2,2,3,4,5,5-+氟,戊焼HFC-43-10mee · CF;CHFCH; 1,500 0,0000 R401a · R22/152a124 (53/13/94) 1,263 0,0000 R401a · R22/152a124 (53/13/94) 1,263 0,0000 R404a · R125/143a/134a (14/52/4) 4,728 0,0000 R407a · R32/125/134a (23/25/52) 2,508 0,0000 R407a · R32/125/134a (23/25/52) 2,508 0,0000 R407a · R32/125/134a (23/25/52) 2,508 0,0000 R406a · R125/143a/22 (7/46/47) 3,257 0,0000 R407a · R32/125/134a (50.0050.0) 0,0005 3,256 1,0829 r\$30.7 0,00005 3,257 0,0000	1,1,1,2,2,3-六氟丙烷HFC-236cb,CH_FCF_CF,			0.0000
1,1,1,3,3-六氟丙焼HFC-236a、CH,F6 9,810 0.0000 1,1,2,3,3-五氟丙焼HFC-245ca、CH,FCF,CHF 0.0000 1,1,1,3,3-五氟丙焼HFC-245ca、CH,FCF,CHF 1,030 0.0000 1,1,1,3,3-五氟丙焼HFC-245ca、CH,FCF,CHF 1,030 0.0000 1,1,1,3,3-五氟万焼HFC-365m企、CF,CH,CF,CHS 794 0.0000 1,1,1,2,3,4,5,5,5-+氟戊烷HFC-43-10mee、CF,CHFCF,CFs 1,640 0.0000 HCFC-22、CHF ₂ CI 1,500 0.0000 R401a、R22/152a/24 (53/13/34) 1,263 0.0000 R401a、R22/152a/24 (53/13/34) 1,221 0.0000 R404a、R125/143a/134a (44/524) 4,728 0.0000 R407a、R32/125/134a (20/40/40) 2,262 0.0000 R407a、R32/125/134a (10/70/20) 2,804 0.0000 R407a、R32/125/134a (123/25/2) 2,508 0.0000 R407a、R32/125/134a (123/25/2) 2,508 0.0000 R408a、R125/143a/22 (7/4647) 3,257 0.0000 R407a、R125/143a (50.0/50.0) 0.0005 2,256 1.0829 R507a、R125/143a (50.0/50.0) 0.00005 2,256 1.0829 R507a、R125/143a (50.0/50.0) 0.00005 2,256 1.0829 R56	1,1,1,2,3,3-六氟丙烷HFC-236ea,CHF2CHFCF3		_	0.0000
1,1,2,2,3-五氟两焼HFC-245a、CH_FCF_CHF2 0,0000 1,1,1,3,3-五氟丙焼HFC-245fa、CHF2CH2CF3 1,030 0,0000 1,1,1,3,3-五氟丁焼HFC-365mfc、CF_CH_CF_CH3 7.94 0,0000 1,1,1,2,2,3,4,5,5,5-+氟戊烷HFC-43-10mee、CF_CHFCHFCF_CF3 1,640 0,0000 HCFC-22、CHF2CI 1,640 0,0000 R401a、R22/152a/124 (53/13/34) 1,263 0,0000 R401a、R22/152a/124 (61/1/28) 1,221 0,0000 R404a、R125/143a/134a (44/52/4) 4,728 0,0000 R407a、R32/125/134a (10/70/20) 2,262 0,0000 R407a、R32/125/134a (10/70/20) 2,804 0,0000 R407a、R32/125/134a (10/70/20) 2,508 0,0000 R407a、R32/125/134a (10/70/20) 2,508 0,0000 R407a、R32/125/134a (10/70/20) 2,508 0,0000 R407a、R32/125/134a (10/70/20) 2,508 0,0000 R407a、R32/125/143a/22 (74/6/47) 3,257 0,0000 R40a、SP. 0,00005 2,256 1,0829 R507a、R125/143a (50,050) 0,00029 13,258 38,1830 Affictair, SF. 0,00000 25,200 0,00000 Affictair, SF. 0	1,1,1,3,3,3-六氟丙烷HFC-236fa,C.H.F。		9,810	0.0000
1,1,1,3,3-五氟两焼HFC-245fa、CHF2CH2CF3 1,030 0.0000 1,1,1,3,3-五氟丁焼HFC-365mfc、CF_CH_CF_CH_ 794 0.0000 1,1,1,2,2,3,4,5,5,5-十氟戊烷HFC-43-10mee、CF_CHFCHFCF_CF3 1,640 0.0000 HCFC-22、CHF_C1 1,500 0.0000 R401a、R22/152a/124 (53/13/24) 1,263 0.0000 R401a、R22/152a/124 (53/13/24) 1,263 0.0000 R401a、R22/152a/124 (61/1/28) 1,221 0.0000 R401a、R22/152a/124 (61/1/28) 1,221 0.0000 R407a、R32/125/134a (204040) 2,262 0.0000 R407a、R32/125/134a (1007020) 2,804 0.0000 R407a、R32/125/134a (1007020) 2,508 0.0000 R407a、R32/125/134a (102/5/52) 2,508 0.0000 R407a、R32/125/134a (102/5/52) 2,508 0.0000 R407a、R32/125 (50/50) 0.0005 2,256 1.0829 R507a、R125/143a (50.0/50.0) 0.00029 13,258 38.1830 A%fiftai、SF. 25,200 0.00000 1.252 0.00000 Total fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerant SF_6 : 0.00000 39.5310 39.5310 39.5310	1,1,2,2,3-五氟丙烷HFC-245ca,CH ₂ FCF ₂ CHF ₂		_	0.0000
1,1,1,3,3-五氟丁焼HFC-365mc・CF_CH_CF_CH 794 0,0000 1,1,1,2,2,3,4,5,5,5-+氟戊烷HFC-43-10mæ・CF_CHFCHFCF_CF_5 1,640 0,0000 HCFC-22 · CHF_CCI 1,500 0,0000 R401a · R22/152a/124 (53/13/34) 1,263 0,0000 R401a · R22/152a/124 (61/11/28) 1,221 0,0000 R401a · R22/152a/124 (61/11/28) 4,728 0,0000 R401a · R125/143a/134a (44/52/4) 4,728 0,0000 R407a · R32/125/134a (20/40/40) 2,262 0,0000 R407a · R32/125/134a (10/70/20) 2,804 0,0000 R407a · R32/125/134a (10/70/20) 2,508 0,0000 R407a · R32/125/134a (23/25/52) 2,508 0,0000 R408a · R125/143a/22 (74/6/47) 3,257 0,0000 R40a · R32/125 (50/50) 0,0002 3,257 0,0000 R410a · R32/125 (50/50,0) 0,0002 13,258 38.1830 xmartiair · SF_6 25,200 0,00000 25,200 0,00000 xmartiair · SF_6 0,00000 25,200 0,00000 25,200 0,00000 xmartiair · SF_6 0,00000 25,200 0,00000 39,5310 39,5310	1,1,1,3,3-五氟丙烷HFC-245fa,CHF2CH2CF3		1,030	0.0000
1,1,1,2,2,3,4,5,5,5-+ 1,4,5,5,5-+ 1,4,5,5,5-+ 1,5,0,5,5-+ 1,5,0,5,5-+ 1,5,0,5,5,5-+ 1,5,0,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	1,1,1,3,3-五氟丁烷HFC-365mfc,CF,CH,CF,CH,		794	0.0000
HCFC-22・CHF ₂ C1 1,500 0,0000 R401a・R22152a124 (53/13/34) 1,263 0,0000 R401b・R22152a124 (61/11/28) 1,221 0,0000 R404a・R125/143a/134a (44/52/4) 4,728 0,0000 R407a・R32125/134a (20/40/40) 2,262 0,0000 R407b・R32125/134a (10/70/20) 2,804 0,0000 R407c・R32125/134a (23/25/52) 2,508 0,0000 R408a・R125/143a/22 (7/46/47) 3,257 0,0000 R40a・R32125 (50/50) 0,0005 2,256 1,0829 R507a・R125/143a (50.0/50.0) 0,0005 2,2500 0,0000 六氟/t-硫・SFc 25,200 0,0000 3,257 0,0000 六氟/t-硫・SFc 25,200 0,0000 2,526 1,0829 水氟/t-硫・SFc 25,200 0,0000 3,257 0,0000 六氟/t-硫・SFc 25,200 0,0000 3,257 0,0000 六氟/t-硫・SFc 25,200 0,0000 3,257 0,0000 六氟/t-硫・SFc 25,200 0,0000 3,257 0,00000 SFc	1,1,1,2,2,3,4,5,5,5-十氟戊烷HFC-43-10mee,CF,CHFCHFCF,CF,		1,640	0.0000
R401a・R22A52aA24 (53/13/34) 1,263 0.0000 R401b・R22A52aA24 (61/11/28) 1,221 0.0000 R404a・R125/143a/134a (44/52A) 4,728 0.0000 R407a・R32A125/134a (20/40/40) 2,262 0.0000 R407b・R32A125/134a (10/70/20) 2,804 0.0000 R407c・R32A125/134a (10/70/20) 2,508 0.0000 R408a・R125/143a/22 (74/64/7) 2,508 0.0000 R40a・R32A125 (50/50) 0.0005 2,256 1.0829 R507a・R125/143a (50.0/50.0) 0.0005 2,256 1.0829 R507a・R125/143a (50.0/50.0) 0.00005 2,256 1.0829 R507a・R125/143a (50.0/50.0) 0.00005 2,256 1.0829 R507a・R125/143a (50.0/50.0) 0.00005 2,252 0.00000 六氟/t硫・SFe 25,200 0.00000 55,200 0.00000 六氟/t 硫・SFe 25,200 0.00000 55,6 0.00000 六氟/t 硫・SFe 0.0000 55,6 0.00000 55,6 0.00000 イム の 39.5310 55,6 0.00000 55,6	HCFC-22, CHF2CI		1,500	0.0000
R401b · R22/152a/124 (61/11/28) 1,221 0.0000 R404a · R125/143a/134a (44/52/4) 4,728 0.0000 R407a · R32/125/134a (2040/40) 2,262 0.0000 R407b · R32/125/134a (10/70/20) 2,804 0.0000 R407c · R32/125/134a (10/70/20) 2,508 0.0000 R407c · R32/125/134a (23/125/52) 2,508 0.0000 R408a · R125/143a/22 (7/46/47) 3,257 0.0000 R40a · R32/125 (50/50) 0.0005 2,256 1.0829 R507a · R125/143a (50.0/50.0) 0.00029 13,258 38.1830 六氟化硫 · SF6 25,200 0.0000 0.0000 六氟化硫 · SF6 0.0000 0.0000 0.0000 六氟化硫 · SF6 0.0000 0.0000 0.0000 六氟化硫 · SF6 0.0000 0.0000 0.0000 六氟化 · SF6 0.0000 0.0000 0.0000 六氟化 · SF6 0.0000 0.0000 0.0000 小氟化 · SF6 0.0000 0.0000 SF6 : 0.0000 diss solvents, aerosols, and refrigerant 39.5310 39.5310	R401a, R22/152a/124 (53/13/34)		1,263	0.0000
R404a · R125/143a/134a (14/52/4) 4,728 0.0000 R407a · R32/125/134a (20/0040) 2,262 0.0000 R407b · R32/125/134a (10/70/20) 2,804 0.0000 R407c · R32/125/134a (23/25/52) 2,508 0.0000 R408a · R125/143a/22 (7/46/47) 3,257 0.0000 R40a · R32/125 (50/50) 0.0005 2,256 1.0829 R507a · R125/143a (50.0/50.0) 0.0002 13,258 38.1830 六氟化硫 · SF ₆ 25,200 0.0000 0.0000 Total fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerant SF ₆ : 0.0000 0.0000 total greenhouse gases 0.0000 39.5310 39.5310	R401b, R22/152a/124 (61/11/28)		1,221	0,0000
R407a・R32/125/134a (20/40/40) 2,262 0.0000 R407b・R32/125/134a (10/70/20) 2,804 0.0000 R407c・R32/125/134a (23/25/52) 2,508 0.0000 R408a・R125/143a/22 (7/46/47) 3,257 0.0000 R410a・R32/125 (50/50) 0.0005 2,256 1.0829 R507a・R125/143a (50.0/50.0) 0.0009 13,258 38.1830 六氟化硫・SFc 25,200 0.0000 Total fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerant CO2 : 0.0000 total greenhouse gases 5F6 : 0.0000 total greenhouse gases 5576 : 0.0000	R404a,R125/143a/134a(44/52/4)		4,728	0.0000
R407b・R32/125/134a (10/70/20) 2,804 0,0000 R407c・R32/125/134a (23/25/52) 2,508 0,0000 R408a・R125/143a/22 (7/46/47) 3,257 0,0000 R410a・R32/125 (50/50) 0,0005 2,256 1,0829 R507a・R125/143a (50.0/50.0) 0,00029 13,258 38.1830 六氟化硫・SF6 25,200 0,0000 Total fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerant CO2 : 0,0000 total greenhouse gases 5F6 : 0,0000	R407a, R32/125/134a (20/40/40)		2,262	0.0000
R407c・R32/125/134a (23/25/52) 2,508 0,0000 R408a・R125/143a/22 (7/46/47) 3,257 0,0000 R410a・R32/125 (50/50) 0,0005 2,256 1,0829 R507a・R125/143a (50.0/50.0) 0,0009 13,258 38.1830 六氟化硫・SF6 25,200 0,0000 Total fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerant CO 2 : 0,0000 0,0000 SF6 : 0,0000 39.5310 39.5310 total greenhouse gases total greenhouse gases 39.5310	R4076, R32/125/134a (10/70/20)		2,804	0.0000
R408a * R125/143a/22 (74647) 3,257 0,0000 R410a * R32/125 (50/50) 0,0005 2,256 1,0829 R507a * R125/143a (50.0/50.0) 0,0009 13,258 38.1830 六氟化硫 * SF_6 25,200 0,0000 Total fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerant CO 2 : 0,0000 total greenhouse gases 5F6 : 0,0000 total greenhouse gases 39,5310 total greenhouse gases 39,5310	R407c · R32/125/134a (23/25/52)		2,508	0.0000
R410a * R32/125 (50/50) 0.0005 2,256 1.0829 R507a * R125/143a (50.0/50.0) 0.0029 13,258 38.1830 六氟化硫 * SF6 25,200 0.0000 Total fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerant CO2 : 0.0000 SF6 : 0.0000 SF6 : 0.0000 total greenhouse gases 39.5310 greenhouse gases 39.5310	R408a,R125/143a/22(7/46/47)		3,257	0.0000
R507a · R125/143a (50.0/50.0) 0.0029 13,258 38.1830 六氟化硫 · SF。 25,200 0.0000 Total fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerant CO2 : 0.0000 HFCs : 39.5310 SF6 : 0.0000 0.0000 0.0000 0.0000 Total fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerant total greenhouse gases 39.5310	R410a, R32/125 (50/50)	0.0005	2,256	1.0829
六氟化硫・SF。 25,200 0.0000 Total fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerant CO2: 0.0000 HFCs: 39.5310 SF6: 0.0000 total greenhouse gases	R507a • R125/143a (50.0/50.0)	0.0029	13,258	38.1830
Total fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerantCO2 : 0.0000HFCs : 39.531039.5310SF6 : 0.000039.5310total greenhouse gases39.5310	六氟化硫,SF。	2	25,200	0.0000
Total fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerant HFCs : 39.5310 SF6 : 0.0000 0.0000 total greenhouse gases 39.5310			CO . :	0.0000
Iotal fugitive emissions of greenhouse gases such as solvents, aerosols, and refrigerant SF ₆ : 0.0000 total greenhouse gases 39.5310			HFCs -	39 5310
as solvents, aerosols, and refrigerant total greenhouse gases	Iotal fugitive emissions of greenhouse ga	ases such	SE.	0 0000
total 39.3310 greenhouse gases	as solvents, aerosols, and refrigera	nt 🔤	or6 -	20.5210
greenhouse gases		total	39.3310	
gases			greenhouse	
			gases	

• Electricity consumption unit: 1,000 kWh

4-2. Energy ~ Electricity and Steam

The power coefficient is not a fixed value, please update the coefficient according to the check year

			Emis	sion coeff	icient	Power	Greenhouse gas emissions					
Electricity Usage		Consumption/sales (thousand)	(me	tric tons/l	(Wh)	purchase	CO2 (motric	CH4 (motric	N ₂ O	Total GHG		
		kwn/year	CO ₂	CH ₄	N ₂ O	source	tons/year)	tons/year)	(metric tons/year)	CO2e/year)		
Purchased	Taipower	65.283	0.509	0	0	台電	33.23	0.00	0.00	33.23		
electricity	Cogeneration plant						0.00	0.00	0.00	0.00		
Sales of self-generated electricity (unit1)							0.00	0.00	0.00	0.00		
Sales of self-generate	ed electricity (unit 2)						0.00	0.00	0.00	0.00		
Total emissions from purchased electricity use (scope 2)						33.23	0.00	0.00	33.23			
Total emissions from electricity sold outside:						0.00	0.00	0.00	0.00			

Greenhouse Gas Emissions (Category 1&2)

• The emission inventory can obtain the Category 1&2 greenhouse gas emissions of the year °

Emission proportion of each category	Category 1	Category 2
Greenhouse gas emissions (metric tons CO2e/year)	85.94	33.23
Proportion of total emissions (%)	72.12	27.88

Data Creation (Category 3)

• Project:

Emissions from business travel: time of business trip, destination, number of people traveling, mode of transportation

Emissions from employee commuting: employee name, commuting method, residential address, number of working days

• How activity data is measured:

Google map shortest time distance.

• Precautions:

It is recommended to take a screenshot after the measurement. There will be errors in the distance measured by Google map at different time points.

Business travel, employee commuting coefficients and formulas (Category 3)

Business travel

Private passenger car (gasoline) (2014): 0.115 kgCO₂e/person-km (pkm)

Robotic bicycle (gasoline) (2014): 0.0951 kgCO₂e/person-kilometer (pkm)

Taiwan Railway Transportation Service (Electrical Multiple Units) (2015): 0.054 kgCO₂e/person-kilometer (pkm)

High-speed rail transport services: official website carbon footprint map (kgCO₂e)

Taipei MRT carbon footprint (2016): 0.035 kgCO₂e/person-km (pkm)

Greenhouse gas emissions (CO2e) = travel distance (km) * number of travelers (p) * carbon footprint emission factor

• Employee commuting

Private passenger car (gasoline) (2014): 0.115 kgCO₂e/person-km (pkm)

Robotic bicycle (gasoline) (2014): 0.0951 kgCO₂e/person-kilometer (pkm)

Greenhouse gas emissions (CO2e) = commuting distance (km) * number of employees (p) * working days (days) * carbon footprint emission factor

Business travel, employee commuting coefficients and formulas (Category 3)

• High-speed rail transport services: official website carbon footprint map (kgCO₂e)

Carbo Passenge	n Footprint r Ships Betw Stations	of veen										
station	Nangang	Таіреі	Banqiao	Taoyuan	Hsinchu	Maioli	Taichung	Changhua	Yunlin	Chiayi	Tainan	Zuoying
Nangang	-	0.30	0.53	1.46	2.42	3.47	5.42	6.32	7.11	8.18	10.17	11.18
Taipei	0.30	-	0.23	1.17	2.13	3.17	5.13	6.03	6.82	7.88	9.88	10.88
Banqiao	0.53	0.23	-	0.94	1.89	2.94	4.89	5.80	6.59	7.65	9.65	10.65
Taoyuan	1.46	1.17	0.94	-	0.96	2.01	3.96	4.86	5.65	6.71	8.71	9.72
Hsinchu	2.42	2.13	1.89	0.96	-	1.05	3.00	3.90	4.69	5.75	7.75	8.76
Maioli	3.47	3.17	2.94	2.01	1.05	-	1.95	2.86	3.64	4.71	6.70	7.71
Taichung	5.42	5.13	4.89	3.96	3.00	1.95	-	0.90	1.69	2.75	4.75	5.76
Changhu a	6.32	6.03	5.80	4.86	3.90	2.86	0.90	-	0.79	1.85	3.85	4.85
Yunlin	7.11	6.82	6.59	5.65	4.69	3.64	1.69	0.79	-	1.06	3.06	4.06
Chiayi	8.18	7.88	7.65	6.71	5.75	4.71	2.75	1.85	1.06	-	2.00	3.00
Tainan	10.17	9.88	9.65	8.71	7.75	6.70	4.75	3.85	3.06	2.00	-	1.00
Zuoying	11.18	10.88	10.65	9.72	8.76	7.71	5.76	4.85	4.06	3.00	1.00	-
						Jnit: Carb	on Footprir	nt (kgCO2e)				

Business travel activity data (Category 3)

On Business trip	Yitong's North	Rebate	Human Effect	Mode of transporta tion		Paths 機
2021/1/14	No. 335, Ruigguang Road, Neihu District, Taipei city	231公里	1	HSR+MRT	locomotive	合作社=>機車=>高鐵雲林=>高鐵南港=>>捷運南港=>捷運港墘站=>目的地
2021/1/16	台南市麻豆區新生北路56號	58.6公里	1	Train + model car	locomotive	住宅=>機車=>火車站大林-隆田=>機車=>麻豆農會超市
2021/3/16	雲林縣斗六市雲林路二段515號	5.9公里	1	locomotive		合作社=>機車=>目的地
2021/3/17	臺北市中正區南海路37號	224公里	1	HSR+MRT	truck	合作社=>貨車=>高鐵雲林=>高鐵台北=>捷運台北=>捷運中正紀念堂站=>目的地
2021/3/17	臺北市中正區南海路37號	224公里	1	HSR+MRT	Minibus	合作社=>小客車=>高鐵雲林=>高鐵台北=>捷運台北=>捷運中正紀念堂站=>目的地
2021/3/17	臺北市中正區南海路37號	224公里	1	HSR+MRT	locomotive	合作社=>機車=>高鐵雲林=>高鐵台北=>捷運台北=>捷運中正紀念堂站=>目的地
2021/3/23	台南市東區北門路二段16號	89.6公里	1	train	locomotive	合作社=>機車=>台鐵斗南=>台鐵台南=>目的地
2021/4/14	高雄市前金區中正四路230號	134公里	1	HSR+ bicycle	locomotive	合作社=>機車=>高鐵雲林=>高鐵左營=>自行車=>目的地
2021/4/29	台北市信義區忠孝東路四段560號	協233公里	1	HSR+MRT	truck	合作社=>貨車=>高鐵雲林=>高鐵台北=>捷運台北=>捷運市政府站=>目的地
2021/4/29	台北市信義區忠孝東路四段560號	協233公里	1	HSR+MRT	Minibus	合作社=>小客車=>高鐵雲林=>高鐵台北=>捷運台北=>捷運市政府站=>目的地
2021/7/6	台北市中山區民族東路336號	230公里	1	HSR+MRT	truck	合作社=>貨車=>高鐵雲林=>高鐵台北=>捷運台北=>捷運行天宮站=>目的地
2021/7/6	台北市中山區民族東路336號	230公里	1	HSR+MRT	Minibus	合作社=>小客車=>高鐵雲林=>高鐵台北=>捷運台北=>捷運行天宮站=>目的地
2021/7/12	台北市中山區民族東路336號	230公里	1	HSR+taxi	Minibus	合作社=>小客車=>高鐵雲林=>高鐵台北=>捷運台北=>捷運行天宮站=>計程車=>目的地
2021/8/10	台北市信義區忠孝東路四段560號	橋233公里	1	HSR+MRT	truck	合作社=>貨車=>高鐵雲林=>高鐵台北=>捷運台北=>捷運市政府站=>目的地
2021/12/16	台北市中山區民族東路336號	230公里	1	HSR+taxi	Minibus	合作社=>小客車=>高鐵雲林=>高鐵台北=>捷運台北=>捷運行天宮站=>計程車=>目的地

Business travel activity data calculation (Category 3)

Distance (km)	Self-use minibus (gasoline) (2014)	(kgCO2e/year)	(public CO2e/year)	(public CO2e/year)
距離(km)	自用小客車(汽油)(2014)	碳排放(kgCO2e/年)	碳排放(公頓CO2e/年)	來回碳排放(公頓CO2e/年)
143	0.115			
人數(p) Number of per 1	ople (p)			
延人公里(pkm) person-k	ilometer (pkm)			
143		16.445	0.016445	0.03289
	Little Business (gasoline) (2014)			
距離(km)	營業小客車(汽油)(2014)	碳排放(kgC02e/年)	碳排放(公噸CO2e/年)	
2.6	0.133			
人數(p)				
1				
延人公里(pkm)				
2.6		0.3458	0.0003458	0.0006916
	Taiwan Railway Transportation Service (Electrical Multiple Units) (2015)			
距離(km)	臺灣鐵路運輸服務(電聯車)(2015)			
135.7	0.054			
人數(p)				
1				
延人公里(pkm)				
135.7		7.3278	0.0073278	0.0146556
Business travel activity data calculation (Category 3)

 Emissions need to be calculated for round trips, business travel is 0.281583167 metric tons CO2e/year

0.009335967
0.15874
0.06527
281583167

Employee commuting activity data (Category 3)

Employee' s name	Commuting	Xing company distance (km)	110 year in service	Place of residence		
盧期	car	8	12 month	Dazhi Street, Douliu City, Yunlin County No		
張雄	car	8.1	12 month	Mayuan, Mayuan Village, Gukeng Township, Yunlin County		
劉福	car	9.4	12 month	Tianxin Village, Gukeng Township, Yunlin City		
高銓	car	62.4	12 month	Shuilin Village. Liujia Township, Tainan County 12 Neighborhood street		
翁翔	car	7.6	6 month	Horitou, Huwei Town, Lin County		
蔡寧	car	17.8	3.5 month	Chongyang Street, Xiluo Town, Yunlin		
詹如	walking	0.8	12 month	Minsheng Road Building, Dounan Town		
曾玲	locomotive	7.8	12 month	Xiaxili, Huwei Town, Yunlin County		
劉婷	locomotive	1	12 month	Xinsheng Third Road, Dounan Town		
王蓉	locomotive	8.6	12 month	Pinglinli, Dalin Town, Chiayi County Shuiyuan Road		
林岑	locomotive	3.6	7 month	Wen'an, Xinguangli, Dounan Town, Yunlin County		
余城	locomotive	17	7 month	Daxinli, Xiluo Town, Yunlin county		
林『蕙	locomotive	6.1	3 month	Xingnanli, Huwei Town, Yunlin County		

Calculation of employee commuting activity data (Category 3)

• Emissions need to be calculated for round trips, employee commuting is 7.4454523 metric tons CO2e/year

Positive test(km)	Number of people (p)		Employee		Zipeng Bus (gasoline) (2014		Carbon emissions (kgCo2e/year)	Carbon emissions (public item CO2e/year)	
距離(km)	人數(p)	員	Ĺ	延人公里(pkm)	自用小客車(汽油)(2014	上班天數	碳排放(kgCO2e/年]碳排放(公噸CO2e/年	 來回碳排放(公噸CO2e/年)
8	1	盧	期	8	0.115	204	187.68	0.18768	
6.6	1	張	雄	8.1	0.115	280	260.82	0.26082	r.
11	1	劉	福	9.4	0.115	285	308.085	0.308085	
62.5	1	高	銓	62.4	0.115	268	1923.168	1.923168	
7.6	1	翁	到	7.6	0.115	130	113.62	0.11362	
17.9	1	蔡	寧	17.8	0.115	76	155.572	0.155572	
								2.948945	5.89789
距離(km)	人數(p)	到	I	延人公里(pkm)	機器腳踏車(汽油)(2014	上班天數	碳排放(kgCO2e/年	〕碳排放(公頓CO2e/年	<u>.</u>
7.9	1	曾	玲	7.8	0.0951	263	195.08814	0.19508814	
1	1	劉	婷	1	0.0951	249	23.6799	0.0236799	
8.6	1	Ξ	蓉	8.6	0.0951	243	198.73998	0.19873998	
4.3	1	林	岑	3.6	0.0951	150	51.354	0.051354	
19.7	1	余	城	17	0.0951	166	268.3722	0.2683722	e e
6.3	1	林	蕙	6.1	0.0951	63	36.54693	0.03654693	
		-						0.77378115	1.5475623
									7.4454523

Greenhouse Gas Emissions (Category 3)

• The greenhouse gas emissions of Category 3 of the year can be obtained.

Emission proportion of each category	Category 3
Greenhouse gas emissions (metric tons CO2e/year)	7.73
Proportion of total emissions (%)	-

4. Key points of the Greenhouse gas report

Greenhouse Gas Report Information

Necessary information

- Explanation of company and inspection boundaries
- Quantification method
- Emission related data information
- selected information
- Environmental performance information
- Requirements for Greenhouse Gas Program
- Greenhouse gas emission reduction and removal plan

Contents of the Greenhouse Gas Report

Necessa	Optional items			
Organization introduction	Reasons for Quantification of Major Greenhouse Gas Source Exclusions	policy, strategy or program		
		Reduction Initiatives (metric tons CO2e)		
Responsible person or unit	Base Year Inventory List	Greenhouse gas emission reduction plan		
Covered period	Base year or other past GHG numbers	Greenhouse Gas Plan Requirements		
	Any change in data or category	Greenhouse gas emissions generated by the facility (metric tons CO2e)		
organizational boundaries	Quantification method	Quantified total indirect GHG		
Reporting Boundary, Guidelines for Including Significant Releases	Reference or Documentation of Emission Factors	emissions (metric tons CO2e)		
Direct GHG emissions (metric tons	Global warming potential (GWP) value	Emission intensity (metric tons CO2e/per unit of production)		
		Grade		
Category GHG emissions (metric tons CO2e)	Uncertainty	Greenhouse Gas Information Management and Monitoring Procedures		
Emissions from biosources (metric tons CO2e)	Claims, Verification Types, and Assurance Levels	Difference in GHG emissions between current inventory and previous inventory (metric tons CO2e)		

Framework for Greenhouse Gas Reporting (Reference Example)

Chapter 1 Company Profile 1.1 Preface 1.2 Company Profile **1.3 Policy Statement** Chapter II Organizational Boundary 2.1 Company Organization 2.2 Company organizational boundaries 2.3 Period covered by the report and responsibilities Chapter 3 Report Boundary 3.1 Definition 3.2 Category 1 emissions 3.3 Category 2 emissions 3.4 Emissions of other major indirect greenhouse gases (category 3~6) 3.5 Total Greenhouse Gas Emissions 3.6 Items Excluded from Inventory of Greenhouse Gas Emissions Chapter 4 Quantification of Greenhouse Gases 4.1 Quantification method 4.2 Emission factor management 4.3 Description of Quantification Method Changes 4.4 Explanation of Change of Emission Coefficient

Chapter 6 Greenhouse Gas Information Management and Inventory Operation Procedures6.1 Greenhouse Gas Inventory Management Operation Procedures6.2 Greenhouse gas inventory information management

Chapter VII Verification 7.1 Internal Verification 7.2 External Verification

Chapter 8 Greenhouse Gas Reduction Strategies and Programs 8.1 Greenhouse Gas Reduction Strategies 8.2 Greenhouse gas reduction plan

Chapter IX Report Responsibility, Purpose and Qualification
Purpose and format 9.1 Responsibilities for the report
9.2 Purpose of the report
9.3 Format of the report
9.4 Ways of obtaining and disseminating reports Chapter 10 Issuance and management of reports Chapter 11
References

